
The openxlsx2 book

Jan Marvin Garbuszus (JanMarvin) and openxlsx2 authors

Table of contents

Preface 7
Additional examples . 8
Where to get help . 8

1 Introduction 9
1.1 Installation . 10
1.2 Working with the package . 10
1.3 Example . 11
1.4 Authors and contributions . 12
1.5 License . 13
1.6 A note on speed and memory usage . 13
1.7 Invitation to contribute . 13

2 Basics 14
2.1 First steps . 14
2.2 Handling workbooks . 14
2.3 Importing as workbook . 18

3 Exporting data 19
3.1 Exporting data frames or vectors . 19
3.2 Exporting a wbWorkbook . 19
3.3 dims/ wb_dims() . 19

4 Reading to data frames 22
4.1 Importing data . 22

4.1.1 Basic import . 22
4.1.2 col_names - first row as column name 23
4.1.3 detect_dates - convert cells to R dates 23
4.1.4 show_formula - show formulas instead of results 24
4.1.5 dims - read specific dimension . 24
4.1.6 cols - read selected columns . 25
4.1.7 rows - read selected rows . 25
4.1.8 convert - convert input to guessed type 26
4.1.9 skip_empty_rows - remove empty rows 26
4.1.10 skip_empty_cols - remove empty columns 27
4.1.11 row_names - keep rownames from input 27

2

4.1.12 types - convert column to specific type 28
4.1.13 start_row - where to begin . 28
4.1.14 na.strings - define missing values . 29
4.1.15 Importing as workbook . 29

4.2 Example: Reading real world data . 30
4.2.1 Reading the data table . 30
4.2.2 Cleaning the indents . 31
4.2.3 Read selected dims . 32
4.2.4 Read data header and body in parts . 34
4.2.5 Bonus: clean up this xlsx table . 35

5 Of strings and numbers 38
5.1 Default numeric data frame . 38
5.2 Writing missing values . 39
5.3 Writing vectors . 39
5.4 Data frame with multiple row header . 40
5.5 How to write multiple header rows? . 41
5.6 Labelled data . 41
5.7 Hour - Minute - Second . 42

6 Styling of worksheets 43
6.1 Colors, text rotation and number formats . 43

6.1.1 the quick way: using high level functions 43
6.1.2 the long way: using bare metal functions 44

6.2 Working with number formats . 47
6.2.1 numfmts . 47
6.2.2 numfmts2 . 48

6.3 Modifying the column and row widths . 49
6.3.1 wb_set_col_widths . 49
6.3.2 wb_set_row_heigths . 49

6.4 Adding borders . 50
6.4.1 add borders . 50
6.4.2 styled table . 51

6.5 Use workbook colors and modify them . 53
6.6 Copy cell styles . 55
6.7 Style strings . 56
6.8 Create custom table styles . 58
6.9 Named styles . 61
6.10 Styled columns / rows . 64
6.11 Styling with dims . 66

3

7 Conditional Formatting, Databars, and Sparklines 68
7.1 Conditional Formatting . 68

7.1.1 Rule applies to all each cell in range . 69
7.1.2 Highlight row dependent on first cell in row 70
7.1.3 Highlight column dependent on first cell in column 71
7.1.4 Highlight entire range cols X rows dependent only on cell A1 72
7.1.5 Highlight cells in column 1 based on value in column 2 73
7.1.6 Highlight duplicates using default style 73
7.1.7 Cells containing text . 74
7.1.8 Cells not containing text . 75
7.1.9 Cells begins with text . 75
7.1.10 Cells ends with text . 76
7.1.11 Colorscale colors cells based on cell value 77
7.1.12 Between . 78
7.1.13 Top N . 79
7.1.14 Bottom N . 80
7.1.15 Logical Operators . 81
7.1.16 (Not) Contains Blanks . 81
7.1.17 (Not) Contains Errors . 82
7.1.18 Iconset . 82
7.1.19 Unique Values . 83

7.2 Databars . 83
7.3 Sparklines . 85

8 Charts 86
8.1 Adding a chart as an image to a workbook . 86
8.2 Adding {ggplot2} plots to a workbook . 87
8.3 Adding plots via {rvg} or {devEMF} . 88
8.4 Adding {mschart} plots . 90

8.4.1 Add chart and data . 90
8.4.2 Add chart using wb_data() . 91
8.4.3 Add and fill a chartsheet . 93

9 Spreadsheet formulas 95
9.1 Simple formulas . 96
9.2 Array formulas . 96
9.3 Array formulas creating multiple fields . 97
9.4 Modern spreadsheet functions . 97
9.5 Shared formulas . 98
9.6 Cell error handling . 99
9.7 cells metadata (cm) formulas . 99
9.8 dataTable formulas . 99

4

10 Pivot tables 105
10.1 Adding pivot tables . 105

10.1.1 Filter, row, column, and data . 107
10.1.2 Sorting . 108
10.1.3 Aggregation functions . 110
10.1.4 Styling pivot tables . 111
10.1.5 Pivot table dims . 114
10.1.6 Using number formats . 116

10.2 Adding slicers to pivot tables . 117
10.3 Choosing variable filters . 118
10.4 Final remarks . 120

11 Data Validation 121
11.1 Checking numeric ranges and text lengths . 121
11.2 Date and Time cell validation . 122
11.3 validate list: validate inputs on one sheet with another 123
11.4 validate list: validate inputs with values . 125
11.5 Examples combining data validation and formulas 125

11.5.1 Example 1: hyperlink to selected value 125
11.5.2 Example 2: create hyperlink to github 125

12 Form control 127
12.1 What Are Form Controls? . 127
12.2 Pros and Cons of Using Form Controls . 129

12.2.1 Pros: . 129
12.2.2 Cons: . 129

12.3 Checkboxes . 129
12.4 Radio Buttons . 130
12.5 Dropdown lists . 130

13 Cloning and copying 132
13.1 Copying cells . 132
13.2 Cloning worksheets . 133

14 Comments and Working with Shapes in openxlsx2 134
14.1 Adding Comments . 134

14.1.1 Creating a Comment . 134
14.1.2 Comments with background images . 135

14.2 Working with Threads . 136
14.2.1 Persons, create one or become one . 136
14.2.2 Creating a Thread . 137

14.3 Working with Shape Objects . 138
14.3.1 Adding a Rectangle Shape . 138

5

15 Upgrade from openxlsx 141
15.1 Basic read and write functions . 141

15.1.1 Read xlsx or xlsm files . 141
15.2 Write xlsx files . 142
15.3 Basic workbook functions . 142

15.3.1 Loading a workbook . 143
15.3.2 Styles . 143
15.3.3 Conditional formatting . 145
15.3.4 Data validation . 145
15.3.5 Saving . 146

16 Extending openxlsx2 147
16.1 msoc - Encrypting / Decrypting workbooks . 147
16.2 flexlsx - Exporting flextable to workbooks 148
16.3 openxlsx2Extras - Extending openxlsx2 . 149
16.4 ovbars - Reading the vbaProject.bin . 150

References 151

6

Preface

This is a work in progress book describing the features of openxlsx2 (Barbone and Garbuszus
2024). Having written a book before, I never imagined to ever write one again and therefore
I shall not do it. But still I consider it a nice addition to have something more flexible as our
vignettes.

The openxlsx2 book is a comprehensive guide to using the R package openxlsx2 for working
with xlsx files. It covers core functionalities such as reading, writing, and editing office open
xml (OOXML) spreadsheet files, alongside advanced features like styling worksheets, handling
conditional formatting, creating charts, managing pivot tables, and adding data validation.
The book also discusses extending the package’s functionality and upgrading from the original
openxlsx package. It was created in the hopes that it’s a useful resource for R users needing
spreadsheet file manipulation.

This manual was compiled using:

R.version

_
platform x86_64-pc-linux-gnu
arch x86_64
os linux-gnu
system x86_64, linux-gnu
status
major 4
minor 5.1
year 2025
month 06
day 13
svn rev 88306
language R
version.string R version 4.5.1 (2025-06-13)
nickname Great Square Root

and

7

https://github.com/JanMarvin/openxlsx2/

packageVersion("openxlsx2")

[1] '1.18.0.9000'

Graphics might reflect earlier states and are not constantly updated. If you find any irregular-
ities where our code produces different output than expected, please let us know in the issue
tracker at https://github.com/JanMarvin/openxlsx2/.

This manual is available online at

https://JanMarvin.github.io/ox2-book

or as PDF version at

https://JanMarvin.github.io/ox2-book/The-%60openxlsx2%60-book.pdf

Additional examples

For many more examples of what openxlsx2 can do, have a look at the Show and tell section
of the openxlsx2 discussion board: https://github.com/JanMarvin/openxlsx2/discussions/
categories/show-and-tell

Where to get help

For all things openxlsx2 consult our discussion board at https://github.com/JanMarvin/
openxlsx2/discussions/categories/q-a

8

https://github.com/JanMarvin/openxlsx2/
https://JanMarvin.github.io/ox2-book
https://JanMarvin.github.io/ox2-book/The-%60openxlsx2%60-book.pdf
https://github.com/JanMarvin/openxlsx2/discussions/categories/show-and-tell
https://github.com/JanMarvin/openxlsx2/discussions/categories/show-and-tell
https://github.com/JanMarvin/openxlsx2/discussions/categories/q-a
https://github.com/JanMarvin/openxlsx2/discussions/categories/q-a

1 Introduction

Unfortunately the entire business world is still built almost entirely on Microsoft Office tools
and whenever data is involved, this means that is is largely built on the spreadsheet software
Excel. R users that want to interact with this previously closed source file format had to
rely on various packages (the following is not necessarily a complete list of all packages).
Packages that create workbook objects like xlsx (Dragulescu and Arendt 2023) and openxlsx
(Schauberger and Walker 2023) and packages for special tasks namely readxl (Wickham and
Bryan 2023), readxlsb (Allen 2023)1, tidyxl (Garmonsway 2022), writexl (Ooms 2023) and
WriteXLS (Schwartz 2022), some are Windows exclusive interacting with Excel via a DCOM
server RDCOMClient and RExcel 2, some are not, XLconnect. 3

In Excel 2007 a new open standard called OOXML(short for office open xml)4 which we
will refer to as openxml was introduced. In December 2006 this standard was accepted by
the ECMA and it subsequently replaced the previously used xls files wherever people are
working with spreadsheet software (after all we are all aware that accounting does not really
care whatever file format they are using as long as it opens up in their favorite spreadsheet
software). The openxml standard introduced the so called Excel 2007 workbook format xlsx.
These files are a collection of zipped XML-files. This makes is easy to import the files to R,
because all you need is a tool to unzip the files and an XML-parser to import the files as data
frames. Still, since there are various tasks available to interact with spreadsheet file, there are
also various tools required. If all you want to do is read from files readxl is probably enough,
if all you want to do is write xlsx files writexl is probably the fastest choice available. Yet
there are a plethora of other tasks available and this book is about them.

The predecessor to openxlsx2 (Barbone and Garbuszus 2024) called openxlsx (originally
founded by Andrew Walker) was inspired by the rJava based xlsx package, but dropped the
rJava dependency, and the support for the old xls files and wrote a custom XML parser in
Rcpp (Eddelbuettel and François 2011). Later Phillip Schauberger picked up the abandoned
openxlsx package and continues to maintain it. Finally openxlsx2 was forked from openxlsx

1Since the original creation of this section readxlsb has been archived on CRAN. A release that includes a
bug fix for overflowing values can be found at https://github.com/JanMarvin/readxlsb (but this is not
actively developed or maintained).

2See https://github.com/omegahat/RDCOMClient.
3And there are many other packages on CRAN for working with xls/xlsx spreadsheet files. Without a

guarantee for completeness: SheetReader (Henze 2024), tablexlsx (Dotta and Blasco 2024), xlsx2dfs
(Kim 2019), tablaxlsx (Rodríguez 2023), xlr (Hilderson 2025), xlcutter (Gruson 2023), knitxl (Dreano
2023), xlcharts (Luginbuhl 2024), joinXL (Glanville 2016).

4See https://wikipedia.org/wiki/Office_Open_XML.

9

https://github.com/omegahat/RDCOMClient
https://wikipedia.org/wiki/Office_Open_XML

to include (1) the pugixml library (Kapoulkine 2006-2023) to address shortcomings of the
openxlsx XML parser and (2) to switch from methods to the R6 package (Chang 2021) to
introduce modern programming flows. Since then openxlsx2 has evolved a lot, includes many
new features and is in a semi-stable API state since release 1.0.5 This manual is supposed to
bundle and extend the existing vignettes and to document the changes.

1.1 Installation

You can install the stable version of openxlsx2 with:

install.packages('openxlsx2')

You can install the development version of openxlsx2 from GitHub with:

install.packages("remotes")
remotes::install_github("JanMarvin/openxlsx2")

Or from r-universe with:

Enable repository from janmarvin
options(repos = c(
janmarvin = 'https://janmarvin.r-universe.dev',
CRAN = 'https://cloud.r-project.org'))

Download and install openxlsx2 in R
install.packages('openxlsx2')

1.2 Working with the package

We offer two different variants how to work with openxlsx2.

• The first one is to simply work with R objects. It is possible to read (read_xlsx())
and write (write_xlsx()) data from and to files. We offer a number of options in
the commands to support various features of the openxml format, including reading
and writing named ranges and tables. Furthermore, there are several ways to read
certain information of an openxml spreadsheet without having opened it in a spreadsheet
software before, e.g. to get the contained sheet names or tables.

5With ‘semi-stable’ we promise not to break the API unless we come across a bug that forces us to. All
breaking changes are mentioned in the changelog.

10

https://github.com/
https://r-universe.dev/
https://janmarvin.github.io/openxlsx2/news/index.html

• As a second variant openxlsx2 offers the work with so called wbWorkbook objects. Here
an openxml file is read into a corresponding wbWorkbook object (wb_load()) or a new
one is created (wb_workbook()). Afterwards the object can be further modified using
various functions. For example, worksheets can be added or removed, the layout of
cells or entire worksheets can be changed, and cells can be modified (overwritten or
rewritten). Afterwards the wbWorkbook objects can be written as openxml files and
processed by suitable spreadsheet software.

1.3 Example

This is a basic example which shows you how to solve a common problem:

library(openxlsx2)
read xlsx or xlsm files
path <- system.file("extdata/openxlsx2_example.xlsx", package = "openxlsx2")
read_xlsx(path)

Var1 Var2 <NA> Var3 Var4 Var5 Var6 Var7 Var8
3 TRUE 1 NA 1 a 2023-05-29 3209324 This #DIV/0! 01:27:15
4 TRUE NA NA #NUM! b 2023-05-23 <NA> 0 14:02:57
5 TRUE 2 NA 1.34 c 2023-02-01 <NA> #VALUE! 23:01:02
6 FALSE 2 NA <NA> #NUM! <NA> <NA> 2 17:24:53
7 FALSE 3 NA 1.56 e <NA> <NA> <NA> <NA>
8 FALSE 1 NA 1.7 f 2023-03-02 <NA> 2.7 08:45:58
9 NA NA NA <NA> <NA> <NA> <NA> <NA> <NA>
10 FALSE 2 NA 23 h 2023-12-24 <NA> 25 <NA>
11 FALSE 3 NA 67.3 i 2023-12-25 <NA> 3 <NA>
12 NA 1 NA 123 <NA> 2023-07-31 <NA> 122 <NA>

or import workbooks
wb <- wb_load(path)
wb

A Workbook object.

Worksheets:
Sheets: Sheet1, Sheet2
Write order: 1, 2

11

https://janmarvin.github.io/openxlsx2/reference/wbWorkbook.html

read a data frame
wb_to_df(wb)

Var1 Var2 <NA> Var3 Var4 Var5 Var6 Var7 Var8
3 TRUE 1 NA 1 a 2023-05-29 3209324 This #DIV/0! 01:27:15
4 TRUE NA NA #NUM! b 2023-05-23 <NA> 0 14:02:57
5 TRUE 2 NA 1.34 c 2023-02-01 <NA> #VALUE! 23:01:02
6 FALSE 2 NA <NA> #NUM! <NA> <NA> 2 17:24:53
7 FALSE 3 NA 1.56 e <NA> <NA> <NA> <NA>
8 FALSE 1 NA 1.7 f 2023-03-02 <NA> 2.7 08:45:58
9 NA NA NA <NA> <NA> <NA> <NA> <NA> <NA>
10 FALSE 2 NA 23 h 2023-12-24 <NA> 25 <NA>
11 FALSE 3 NA 67.3 i 2023-12-25 <NA> 3 <NA>
12 NA 1 NA 123 <NA> 2023-07-31 <NA> 122 <NA>

and save
temp <- temp_xlsx()
if (interactive()) wb_save(wb, temp)

or create one yourself
wb <- wb_workbook()
add a worksheet
wb$add_worksheet("sheet")
add some data
wb$add_data("sheet", cars)
open it in your default spreadsheet software
if (interactive()) wb$open()

1.4 Authors and contributions

For a full list of all authors that have made this package possible and for whom we are grateful,
please see:

system.file("AUTHORS", package = "openxlsx2")

If you feel like you should be included on this list, please let us know. If you have something
to contribute, you are welcome. If something is not working as expected, open issues or if
you have solved an issue, open a pull request. Please be respectful and be aware that we are
volunteers doing this for fun in our unpaid free time. We will work on problems when we have
time or need.

12

1.5 License

The openxlsx2 package is licensed under the MIT license and is based on openxlsx (by
Alexander Walker and Philipp Schauberger; COPYRIGHT 2014-2022) and pugixml (by Ar-
seny Kapoulkine; COPYRIGHT 2006-2023). Both released under the MIT license.

1.6 A note on speed and memory usage

The current state of openxlsx2 is that it is reasonably fast. That is, it works well with
reasonably large input data when reading or writing. It may not work well with data that
tests the limits of the openxml specification. Things may slow down on the R side of things,
and performance and usability will depend on the speed and size of the local operating system’s
CPU and memory.

Note that there are at least two cases where openxlsx2 constructs potentially large data
frames (i) when loading, openxlsx2 usually needs to read the entire input file into pugixml
and convert it into long data frame(s), and wb_to_df() converts one long data frame into
two data frames that construct the output object and (ii) when adding data to the workbook,
openxlsx2 reshapes the input data frame into a long data frame and stores it in the workbook,
and writes the entire worksheet into a pugixml file that is written when it is complete. Applying
cell styles, date conversions etc. will further slow down the process and finally the sheets will
be zipped to provide the xlsx output.

Therefore, if you are faced with an unreasonably large dataset, either give yourself enough time,
use another package to write the xlsx output (openxlsx2 was not written with the intention
of working with maximum memory efficiency), and by all means use other ways to store data
(binary file formats or a database). However, we are always happy to improve, so if you have
found a way to improve what we are currently doing, please let us know and open an issue or
a pull request.

1.7 Invitation to contribute

We have put a lot of work into openxlsx2 to make it useful for our needs, improving what
we found useful about openxlsx and removing what we didn’t need. We do not claim to be
omniscient about all the things you can do with spreadsheet software, nor do we claim to be
omniscient about all the things you can do in openxlsx2. Nevertheless, we are quite fond of
our little package and invite others to try it out and comment on what they like and of course
what they think we are missing or if something doesn’t work. openxlsx2 is a complex piece
of software that certainly does not work bug-free, even if we did our best. If you want to
contribute to the development of openxlsx2, please be our guest on our Github. Join or open
a discussion, post or fix issues or write us a mail.

13

https://github.com/ycphs/openxlsx
https://github.com/zeux/pugixml

2 Basics

Welcome to the basic manual to openxlsx2. In this manual you will learn how to use
openxlsx2 to import data from xlsx-files to R as well as how to export data from R to
xlsx, and how to import and modify these openxml workbooks in R. This package is based on
the work of many contributors to openxlsx. It was mostly rewritten using pugixml and R6
making use of modern technology, providing a fresh and easy to use R package.

Over the years many people have worked on the tricky task to handle xls and xlsx files.
Notably openxlsx, but there are countless other R-packages as well as third party libraries or
calculation software capable of handling such files. Please feel free to use and test your files
with other software and or let us know about your experience. Open an issue on github or
write us a mail.

2.1 First steps

First let’s assume that you have a working installation of openxlsx2 otherwise run the lines
below to install the latest CRAN release:

install.packages("openxlsx2")

Now we load the library:

library(openxlsx2)

2.2 Handling workbooks

The foundation of openxlsx2 is a workbook object. You can think of this object as a workbook
loaded in a spreadsheet software. We import the entire thing. Every sheet, every chart, image,
column, formula style, conditional formatting, pivot table and whatever else a spreadsheet file
is allowed to carry. Therefore if you have a file that you want to work with, you can load it
with:

14

wb <- wb_load("your_file.xlsx")

We usually name workbook objects wb in our documentation, but this is no obligation, you
can name your workbook object whatever you like to call them.

If you do not have a workbook yet, it is possible to create one. In the next line we will use three
wrapper functions wb_workbook(), wb_add_worksheet(), and wb_add_data(). The wrapper
functions are piped together using R’s native pipe operator |>, but similarly you can use the
classic magrittr pipe operator %>%. 1 We assume that you have a dataset your_data, either
a vector, a matrix or a data frame and want to write this in a worksheet:

wb <- wb_workbook() |> wb_add_worksheet() |> wb_add_data(x = your_data)

Okay, now you have a workbook object, but what have we actually done? Let’s work along
the pipe syntax: (1) first we have created the workbook object wb_worbkook(), (2) next we
have assigned it a worksheet wb_add_worksheet(), and (3) we have written data onto the
worksheet.

Let’s try this with actual data. We use the mtcars dataset. In the code we switch the fictional
your_data with mtcars:

wb <- wb_workbook() |> wb_add_worksheet() |> wb_add_data(x = mtcars)

Let’s see what the output looks like:

wb
#> A Workbook object.
#>
#> Worksheets:
#> Sheets: Sheet 1
#> Write order: 1

The output looks a little cryptic, it simply tells the name of the worksheet: wb_add_worksheet()
created a default worksheet name "Sheet 1". In the code above you can see that we do not
use sheet to tell wb_add_data() where it should write the data. This is because internally
we use a waiver current_sheet() so that we do not have to write sheet = "Sheet 1"
whenever we work on the same worksheet. Basically the current sheet is updated whenever a
new worksheet is added to the workbook.

1Basically a pipe operator allows to write code from left to right. Without pipes the code would look like this:

wb <- wb_add_data(wb_add_worksheet(wb_workbook()), x = your_data)

15

wb <- wb_workbook() |>
wb_add_worksheet() |>
wb_add_worksheet() |>
wb_add_data(x = mtcars)

This will create two sheets "Sheet 1" and "Sheet 2" and the data will be written to the
second sheet.

wb
#> A Workbook object.
#>
#> Worksheets:
#> Sheets: Sheet 1, Sheet 2
#> Write order: 1, 2

So how can we access the data on the sheet? Either with wb_to_df() our internal handler to
read from workbooks (this is the underlying function for wb_read() and read_xlsx() which
are mere aliases for wb_to_df()). So lets have a look at the top of the output:

wb |> wb_to_df() |> head()
#> sheet found, but contains no data
#> NULL

Ah! The output is on the second sheet. We need either sheet = 2 or sheet = "Sheet 2".
We go with the second variant, because the sheet index position and their name might differ.

wb |> wb_to_df(sheet = "Sheet 2") |> head()
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> 2 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
#> 3 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
#> 4 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
#> 5 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
#> 6 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
#> 7 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

This looks like the head of the mtcars dataset. So we have successfully read from the workbook.
Now you want to export the workbook to a file:

wb |> wb_save(file = "my_first_worksheet.xlsx")

Alternatively you can directly open it in a spreadsheet software (if you have one installed):

16

wb |> wb_open()

Once again, lets try this with the USPersonalExpenditure dataset:

wb <- wb_workbook()
wb_add_worksheet(wb, sheet = "USexp")
wb_add_data(wb, "USexp", USPersonalExpenditure)

#> Error : Can't add data to a workbook with no worksheet.
#> Did you forget to add a worksheet with `wb_add_worksheet()`?

Dang! What did we do? We’ve added a worksheet, but wait, did we? No, you have to
assign wrapper functions to an object for them to have an effect. Wrapper functions do not
alter the workbook objects they are executed on. You can check that the workbook has no
worksheets:

wb |> wb_get_sheet_names()
#> named character(0)

Once we assign a sheet, this changes, and the data was correctly written:

wb <- wb_workbook()
wb <- wb_add_worksheet(wb, sheet = "USexp")
wb <- wb_add_data(wb, "USexp", USPersonalExpenditure)
wb_get_sheet_names(wb)
#> USexp
#> "USexp"
wb_to_df(wb)
#> 1940 1945 1950 1955 1960
#> 2 22.200 44.500 59.60 73.2 86.80
#> 3 10.500 15.500 29.00 36.5 46.20
#> 4 3.530 5.760 9.71 14.0 21.10
#> 5 1.040 1.980 2.45 3.4 5.40
#> 6 0.341 0.974 1.80 2.6 3.64

Now you’re probably thinking, I don’t want to assign the workbook object all the time and
all the wb_ functions are a little tedious to type. There is an alternative for you and it is
called chaining. Since the workbook is a R6 object internally, you can make use of chains.
Basically every function that starts with wb_ should have a underlying function of the same
name without the prefix. So our data writing example from above can be written as:

17

wb <- wb_workbook()$add_worksheet("USexp")$add_data(x = USPersonalExpenditure)
wb$to_df()
#> 1940 1945 1950 1955 1960
#> 2 22.200 44.500 59.60 73.2 86.80
#> 3 10.500 15.500 29.00 36.5 46.20
#> 4 3.530 5.760 9.71 14.0 21.10
#> 5 1.040 1.980 2.45 3.4 5.40
#> 6 0.341 0.974 1.80 2.6 3.64

Whether you use wrapper functions or chain functions is up to you and personal preference.
There is just one thing to remember, the documentation is exclusively written for the wrapper
function. So if you want to know the arguments for the wb$add_data() part, you have to
lookup the wrapper functions man page ?wb_add_data.

2.3 Importing as workbook

In addition to importing directly from xlsx or xlsm files, openxlsx2 provides the wbWorkbook
class used for importing and modifying entire the openxml files in R. This workbook class is
the heart of openxlsx2 and probably the reason why you are reading this manual in the first
place.

Importing a file into a workbook looks like this:

the file we are going to load
file <- system.file("extdata", "openxlsx2_example.xlsx", package = "openxlsx2")
loading the file into the workbook
wb <- wb_load(file = file)

The additional options wb_load() provides are for internal use: sheet loads only a selected
sheet from the workbook and data_only reads only the data parts from a workbook and
ignores any additional graphics or pivot tables. Both functions create workbook objects that
can only be used to read data, and we do not recommend end users to use them. Especially
not if they intend to re-export the workbook afterwards.

Once a workbook is imported, we provide several functions to interact with and modify it (the
wb_to_df() function mentioned above works the same way for an imported workbook). It is
possible to add new sheets and remove sheets, as well as to add or remove data. R-plots can be
inserted and also the style of the workbook can be changed, new fonts, background colors and
number formats. There is a wealth of options explained in the man pages and the additional
style vignette (more vignettes to follow).

18

3 Exporting data

3.1 Exporting data frames or vectors

If you want to export a data frame from R, you can use write_xlsx() which will create an
xlsx file. This file can be tweaked further. See ?write_xlsx to see all the options. (further
explanation and examples will follow).

write_xlsx(x = mtcars, file = "mtcars.xlsx")

3.2 Exporting a wbWorkbook

Imported workbooks can be saved as xlsx or xlsm files with the wrapper wb_save() or with
wb$save(). Both functions take the filename and an optional overwrite option. If the latter
is set, an optional guard is provided to check if the file you want to write already exists. But be
careful, this is optional. The default is to save the file and replace an existing file. Of course,
on Windows, files that are locked (for example, if they were opened by another process) will
not be replaced.

replace the existing file
wb$save("mtcars.xlsx")

do not overwrite the existing file
try(wb$save("mtcars.xlsx", overwrite = FALSE))

3.3 dims/ wb_dims()

In openxlsx2 functions that interact with worksheet cells are using dims as argument and
require the users to provide these. dims are cells or cell ranges in A1 notation. The single
argument dims hereby replaces col/row, cols/rows and xy. Since A1 notation is rather simple
in the first few columns it might get confusing after the 26. Therefore we provide a wrapper
to construct it:

19

various options
wb_dims(from_row = 4)
#> [1] "A4"

wb_dims(rows = 4, cols = 4)
#> [1] "D4"
wb_dims(rows = 4, cols = "D")
#> [1] "D4"

wb_dims(rows = 4:10, cols = 5:9)
#> [1] "E4:I10"

wb_dims(rows = 4:10, cols = "A:D") # same as below
#> [1] "A4:D10"
wb_dims(rows = seq_len(7), cols = seq_len(4), from_row = 4)
#> [1] "A4:D10"
10 rows and 15 columns from indice B2.
wb_dims(rows = 1:10, cols = 1:15, from_col = "B", from_row = 2)
#> [1] "B2:P11"

data + col names
wb_dims(x = mtcars)
#> [1] "A1:K33"
only data
wb_dims(x = mtcars, select = "data")
#> [1] "A2:K33"

The dims of the values of a column in `x`
wb_dims(x = mtcars, cols = "cyl")
#> [1] "B2:B33"
a column in `x` with the column name
wb_dims(x = mtcars, cols = "cyl", select = "x")
#> [1] "B1:B33"
rows in `x`
wb_dims(x = mtcars)
#> [1] "A1:K33"

in a wb chain
wb <- wb_workbook()$
add_worksheet()$
add_data(x = mtcars)$
add_fill(

20

dims = wb_dims(x = mtcars, rows = 1:5), # only 1st 5 rows of x data
color = wb_color("yellow")

)$
add_fill(

dims = wb_dims(x = mtcars, select = "col_names"), # only column names
color = wb_color("cyan2")

)

or if the data's first coord needs to be located in B2.

wb_dims_custom <- function(...) {
wb_dims(x = mtcars, from_col = "B", from_row = 2, ...)

}
wb <- wb_workbook()$
add_worksheet()$
add_data(x = mtcars, dims = wb_dims_custom())$
add_fill(

dims = wb_dims_custom(rows = 1:5),
color = wb_color("yellow")

)$
add_fill(

dims = wb_dims_custom(select = "col_names"),
color = wb_color("cyan2")

)

21

4 Reading to data frames

4.1 Importing data

Coming from openxlsx you might know about read.xlsx() (two functions, one for files and
one for workbooks) and readWorkbook(). Functions that do different things, but mostly the
same. In openxlsx2 we tried our best to reduce the complexity under the hood and for the
user as well. In openxlsx2 they are replaced with read_xlsx(), wb_read() and they share
the same underlying function wb_to_df().

For this example we will use example data provided by the package. You can locate it in our
“inst/extdata” folder. The files are included with the package source and you can open them
in any calculation software as well.

4.1.1 Basic import

We begin with the openxlsx2_example.xlsx file by telling R where to find this file on our
system

library(openxlsx2)

xl <- system.file("extdata", "openxlsx2_example.xlsx", package = "openxlsx2")

The object contains a path to the xlsx file and we pass this file to our function to read the
workbook into R

import workbook
wb_to_df(xl)
#> Var1 Var2 <NA> Var3 Var4 Var5 Var6 Var7 Var8
#> 3 TRUE 1 NA 1 a 2023-05-29 3209324 This #DIV/0! 01:27:15
#> 4 TRUE NA NA #NUM! b 2023-05-23 <NA> 0 14:02:57
#> 5 TRUE 2 NA 1.34 c 2023-02-01 <NA> #VALUE! 23:01:02
#> 6 FALSE 2 NA <NA> #NUM! <NA> <NA> 2 17:24:53
#> 7 FALSE 3 NA 1.56 e <NA> <NA> <NA> <NA>
#> 8 FALSE 1 NA 1.7 f 2023-03-02 <NA> 2.7 08:45:58

22

#> 9 NA NA NA <NA> <NA> <NA> <NA> <NA> <NA>
#> 10 FALSE 2 NA 23 h 2023-12-24 <NA> 25 <NA>
#> 11 FALSE 3 NA 67.3 i 2023-12-25 <NA> 3 <NA>
#> 12 NA 1 NA 123 <NA> 2023-07-31 <NA> 122 <NA>

The output is created as a data frame and contains data types date, logical, numeric and
character. The function to import the file to R, wb_to_df() provides similar options as the
openxlsx functions read.xlsx() and readWorkbook() and a few new functions we will go
through the options. As you might have noticed, we return the column of the xlsx file as the
row name of the data frame returned. Per default the first sheet in the workbook is imported.
If you want to switch this, either provide the sheet parameter with the correct index or provide
the sheet name.

4.1.2 col_names - first row as column name

In the previous example the first imported row was used as column name for the data frame.
This is the default behavior, but not always wanted or expected. Therefore this behavior can
be disabled by the user.

do not convert first row to column names
wb_to_df(xl, col_names = FALSE)
#> B C D E F G H I J
#> 2 Var1 Var2 NA Var3 Var4 Var5 Var6 Var7 Var8
#> 3 TRUE 1 NA 1 a 2023-05-29 3209324 This #DIV/0! 01:27:15
#> 4 TRUE <NA> NA #NUM! b 2023-05-23 <NA> 0 14:02:57
#> 5 TRUE 2 NA 1.34 c 2023-02-01 <NA> #VALUE! 23:01:02
#> 6 FALSE 2 NA <NA> #NUM! <NA> <NA> 2 17:24:53
#> 7 FALSE 3 NA 1.56 e <NA> <NA> <NA> <NA>
#> 8 FALSE 1 NA 1.7 f 2023-03-02 <NA> 2.7 08:45:58
#> 9 <NA> <NA> NA <NA> <NA> <NA> <NA> <NA> <NA>
#> 10 FALSE 2 NA 23 h 2023-12-24 <NA> 25 <NA>
#> 11 FALSE 3 NA 67.3 i 2023-12-25 <NA> 3 <NA>
#> 12 <NA> 1 NA 123 <NA> 2023-07-31 <NA> 122 <NA>

4.1.3 detect_dates - convert cells to R dates

The creators of the openxml standard are well known for mistakenly treating something as a
date and openxlsx2 has built in ways to identify a cell as a date and will try to convert the
value for you, but unfortunately this is not always a trivial task and might fail. In such a
case we provide an option to disable the date conversion entirely. In this case the underlying
numerical value will be returned.

23

do not try to identify dates in the data
wb_to_df(xl, detect_dates = FALSE)
#> Var1 Var2 <NA> Var3 Var4 Var5 Var6 Var7 Var8
#> 3 TRUE 1 NA 1 a 45075 3209324 This #DIV/0! 0.06059028
#> 4 TRUE NA NA #NUM! b 45069 <NA> 0 0.58538194
#> 5 TRUE 2 NA 1.34 c 44958 <NA> #VALUE! 0.95905093
#> 6 FALSE 2 NA <NA> #NUM! NA <NA> 2 0.72561343
#> 7 FALSE 3 NA 1.56 e NA <NA> <NA> NA
#> 8 FALSE 1 NA 1.7 f 44987 <NA> 2.7 0.36525463
#> 9 NA NA NA <NA> <NA> NA <NA> <NA> NA
#> 10 FALSE 2 NA 23 h 45284 <NA> 25 NA
#> 11 FALSE 3 NA 67.3 i 45285 <NA> 3 NA
#> 12 NA 1 NA 123 <NA> 45138 <NA> 122 NA

4.1.4 show_formula - show formulas instead of results

Sometimes things might feel off. This can be because the openxml files are not updating
formula results in the sheets unless they are opened in software that provides such functionality
as certain tabular calculation software. Therefore the user might be interested in the underlying
functions to see what is going on in the sheet. Using show_formula this is possible

return the underlying Excel formula instead of their values
wb_to_df(xl, show_formula = TRUE)
#> Var1 Var2 <NA> Var3 Var4 Var5 Var6 Var7 Var8
#> 3 TRUE 1 NA 1 a 2023-05-29 3209324 This E3/0 01:27:15
#> 4 TRUE NA NA #NUM! b 2023-05-23 <NA> C4 14:02:57
#> 5 TRUE 2 NA 1.34 c 2023-02-01 <NA> #VALUE! 23:01:02
#> 6 FALSE 2 NA <NA> #NUM! <NA> <NA> C6+E6 17:24:53
#> 7 FALSE 3 NA 1.56 e <NA> <NA> <NA> <NA>
#> 8 FALSE 1 NA 1.7 f 2023-03-02 <NA> C8+E8 08:45:58
#> 9 NA NA NA <NA> <NA> <NA> <NA> <NA> <NA>
#> 10 FALSE 2 NA 23 h 2023-12-24 <NA> SUM(C10,E10) <NA>
#> 11 FALSE 3 NA 67.3 i 2023-12-25 <NA> PRODUCT(C11,E3) <NA>
#> 12 NA 1 NA 123 <NA> 2023-07-31 <NA> E12-C12 <NA>

4.1.5 dims - read specific dimension

Sometimes the entire worksheet contains to much data, in such case we provide functions to
read only a selected dimension range. Such a range consists of either a specific cell like “A1”
or a cell range in the notion used in the openxml standard

24

read dimension without column names
wb_to_df(xl, dims = "A2:C5", col_names = FALSE)
#> A B C
#> 2 NA Var1 Var2
#> 3 NA TRUE 1
#> 4 NA TRUE <NA>
#> 5 NA TRUE 2

Alternatively, if you don’t know the Excel sheet’s address, you can use wb_dims() to specify
the dimension. See below or in?wb_dims for more details.

read dimension without column names with `wb_dims()`
wb_to_df(xl, dims = wb_dims(rows = 2:5, cols = 1:3), col_names = FALSE)
#> A B C
#> 2 NA Var1 Var2
#> 3 NA TRUE 1
#> 4 NA TRUE <NA>
#> 5 NA TRUE 2

4.1.6 cols - read selected columns

If you do not want to read a specific cell, but a cell range you can use the column attribute.
This attribute takes a numeric vector as argument

read selected cols
wb_to_df(xl, cols = c("A:B", "G"))
#> <NA> Var1 Var5
#> 3 NA TRUE 2023-05-29
#> 4 NA TRUE 2023-05-23
#> 5 NA TRUE 2023-02-01
#> 6 NA FALSE <NA>
#> 7 NA FALSE <NA>
#> 8 NA FALSE 2023-03-02
#> 9 NA NA <NA>
#> 10 NA FALSE 2023-12-24
#> 11 NA FALSE 2023-12-25
#> 12 NA NA 2023-07-31

4.1.7 rows - read selected rows

The same goes with rows. You can select them using numeric vectors

25

read selected rows
wb_to_df(xl, rows = c(2, 4, 6))
#> Var1 Var2 <NA> Var3 Var4 Var5 Var6 Var7 Var8
#> 4 TRUE NA NA #NUM! b 2023-05-23 NA 0 14:02:57
#> 6 FALSE 2 NA <NA> #NUM! <NA> NA 2 17:24:53

4.1.8 convert - convert input to guessed type

In xml exists no difference between value types. All values are per default characters. To
provide these as numerics, logicals or dates, openxlsx2 and every other software dealing with
xlsx files has to make assumptions about the cell type. This is especially tricky due to the
notion of worksheets. Unlike in a data frame, a worksheet can have a wild mix of all types of
data. Even though the conversion process from character to date or numeric is rather solid,
sometimes the user might want to see the data without any conversion applied. This might
be useful in cases where something unexpected happened or the import created warnings. In
such a case you can look at the raw input data. If you want to disable date detection as well,
please see the entry above.

convert characters to numerics and date (logical too?)
wb_to_df(xl, convert = FALSE)
#> Var1 Var2 <NA> Var3 Var4 Var5 Var6 Var7 Var8
#> 3 TRUE 1 <NA> 1 a 2023-05-29 3209324 This #DIV/0! 01:27:15
#> 4 TRUE <NA> <NA> #NUM! b 2023-05-23 <NA> 0 14:02:57
#> 5 TRUE 2 <NA> 1.34 c 2023-02-01 <NA> #VALUE! 23:01:02
#> 6 FALSE 2 <NA> <NA> #NUM! <NA> <NA> 2 17:24:53
#> 7 FALSE 3 <NA> 1.56 e <NA> <NA> <NA> <NA>
#> 8 FALSE 1 <NA> 1.7 f 2023-03-02 <NA> 2.7 08:45:58
#> 9 <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA>
#> 10 FALSE 2 <NA> 23 h 2023-12-24 <NA> 25 <NA>
#> 11 FALSE 3 <NA> 67.3 i 2023-12-25 <NA> 3 <NA>
#> 12 <NA> 1 <NA> 123 <NA> 2023-07-31 <NA> 122 <NA>

4.1.9 skip_empty_rows - remove empty rows

Even though openxlsx2 imports everything as requested, sometimes it might be helpful to
remove empty lines from the data. These might be either left empty intentional or empty
because they contain a cell format, but the cell value was removed. This was added mostly
for backward comparability, but the default has been changed to FALSE. The behavior has
changed a bit as well. Previously empty cells were removed prior to the conversion to R data
frames, now they are removed after the conversion and are removed only if they are completely
empty

26

erase empty rows from dataset
wb_to_df(xl, sheet = 1, skip_empty_rows = TRUE) |> tail()
#> Var1 Var2 <NA> Var3 Var4 Var5 Var6 Var7 Var8
#> 6 FALSE 2 NA <NA> #NUM! <NA> <NA> 2 17:24:53
#> 7 FALSE 3 NA 1.56 e <NA> <NA> <NA> <NA>
#> 8 FALSE 1 NA 1.7 f 2023-03-02 <NA> 2.7 08:45:58
#> 10 FALSE 2 NA 23 h 2023-12-24 <NA> 25 <NA>
#> 11 FALSE 3 NA 67.3 i 2023-12-25 <NA> 3 <NA>
#> 12 NA 1 NA 123 <NA> 2023-07-31 <NA> 122 <NA>

4.1.10 skip_empty_cols - remove empty columns

The same for columns

erase empty columns from dataset
wb_to_df(xl, skip_empty_cols = TRUE)
#> Var1 Var2 Var3 Var4 Var5 Var6 Var7 Var8
#> 3 TRUE 1 1 a 2023-05-29 3209324 This #DIV/0! 01:27:15
#> 4 TRUE NA #NUM! b 2023-05-23 <NA> 0 14:02:57
#> 5 TRUE 2 1.34 c 2023-02-01 <NA> #VALUE! 23:01:02
#> 6 FALSE 2 <NA> #NUM! <NA> <NA> 2 17:24:53
#> 7 FALSE 3 1.56 e <NA> <NA> <NA> <NA>
#> 8 FALSE 1 1.7 f 2023-03-02 <NA> 2.7 08:45:58
#> 9 NA NA <NA> <NA> <NA> <NA> <NA> <NA>
#> 10 FALSE 2 23 h 2023-12-24 <NA> 25 <NA>
#> 11 FALSE 3 67.3 i 2023-12-25 <NA> 3 <NA>
#> 12 NA 1 123 <NA> 2023-07-31 <NA> 122 <NA>

4.1.11 row_names - keep rownames from input

Sometimes the data source might provide rownames as well. In such a case you can openxlsx2
to treat the first column as rowname

convert first row to rownames
wb_to_df(xl, sheet = 2, dims = "C6:G9", row_names = TRUE)
#> mpg cyl disp hp
#> Mazda RX4 21.0 6 160 110
#> Mazda RX4 Wag 21.0 6 160 110
#> Datsun 710 22.8 4 108 93

27

4.1.12 types - convert column to specific type

If the user wants to explicitly convert a column into a specific type, it is possible to pass the
type via the types argument. This parameter takes a named numeric of any or all variables
in the data frame. the output type can be specified via numeric values, 0 is character, 1 is
numeric, 2 is date, 3 is datetime (POSIXct), and 4 is logical. Similar users can specify the
type as character string, e.g. "numeric", "Date", "POSIXct".

define type of the data.frame
wb_to_df(xl, cols = c(2, 5), types = c("Var1" = 0, "Var3" = 1))
#> Var1 Var3
#> 3 TRUE 1.00
#> 4 TRUE NaN
#> 5 TRUE 1.34
#> 6 FALSE NA
#> 7 FALSE 1.56
#> 8 FALSE 1.70
#> 9 <NA> NA
#> 10 FALSE 23.00
#> 11 FALSE 67.30
#> 12 <NA> 123.00

4.1.13 start_row - where to begin

Often the creator of the worksheet has used a lot of creativity and the data does not begin
in the first row, instead it begins somewhere else. To define the row where to begin reading,
define it via the start_row parameter

start in row 5
wb_to_df(xl, start_row = 5, col_names = FALSE)
#> B C D E F G H I J
#> 5 TRUE 2 NA 1.34 c 2023-02-01 NA #VALUE! 23:01:02
#> 6 FALSE 2 NA NA #NUM! <NA> NA 2 17:24:53
#> 7 FALSE 3 NA 1.56 e <NA> NA <NA> <NA>
#> 8 FALSE 1 NA 1.70 f 2023-03-02 NA 2.7 08:45:58
#> 9 NA NA NA NA <NA> <NA> NA <NA> <NA>
#> 10 FALSE 2 NA 23.00 h 2023-12-24 NA 25 <NA>
#> 11 FALSE 3 NA 67.30 i 2023-12-25 NA 3 <NA>
#> 12 NA 1 NA 123.00 <NA> 2023-07-31 NA 122 <NA>

28

4.1.14 na.strings - define missing values

There is the “#N/A” string, but often the user will be faced with custom missing values
and other values we are not interested. Such strings can be passed as character vector via
na.strings

na strings
wb_to_df(xl, na.strings = "")
#> Var1 Var2 <NA> Var3 Var4 Var5 Var6 Var7 Var8
#> 3 TRUE 1 NA 1 a 2023-05-29 3209324 This #DIV/0! 01:27:15
#> 4 TRUE NA NA #NUM! b 2023-05-23 <NA> 0 14:02:57
#> 5 TRUE 2 NA 1.34 c 2023-02-01 <NA> #VALUE! 23:01:02
#> 6 FALSE 2 NA <NA> #NUM! <NA> <NA> 2 17:24:53
#> 7 FALSE 3 NA 1.56 e <NA> <NA> <NA> <NA>
#> 8 FALSE 1 NA 1.7 f 2023-03-02 <NA> 2.7 08:45:58
#> 9 NA NA NA <NA> <NA> <NA> <NA> <NA> <NA>
#> 10 FALSE 2 NA 23 h 2023-12-24 <NA> 25 <NA>
#> 11 FALSE 3 NA 67.3 i 2023-12-25 <NA> 3 <NA>
#> 12 NA 1 NA 123 <NA> 2023-07-31 <NA> 122 <NA>

4.1.15 Importing as workbook

In addition to importing directly from xlsx, xlsm or xlsb files, openxlsx2 provides the
wbWorkbook class used for importing and modifying entire the openxml files in R. This
workbook class is the heart of openxlsx2 and probably the reason why you are reading this
manual in the first place.

Importing a file into a workbook looks like this:

the file we are going to load
xl <- system.file("extdata", "openxlsx2_example.xlsx", package = "openxlsx2")
loading the file into the workbook
wb <- wb_load(file = xl)

The additional options wb_load() provides are for internal use: sheet loads only a selected
sheet from the workbook and data_only reads only the data parts from a workbook and
ignores any additional graphics or pivot tables. Both functions create workbook objects that
can only be used to read data, and we do not recommend end users to use them. Especially
not if they intend to re-export the workbook afterwards.

Once a workbook is imported, we provide several functions to interact with and modify it (the
wb_to_df() function mentioned above works the same way for an imported workbook). It is

29

possible to add new sheets and remove sheets, as well as to add or remove data. R-plots can be
inserted and also the style of the workbook can be changed, new fonts, background colors and
number formats. There is a wealth of options explained in the man pages and the additional
style vignette (more vignettes to follow).

4.2 Example: Reading real world data

In the lines above we have seen various ways how to read data. There is just one downside,
actual real world data is usually not as nice and simple as the data we have seen above. Real
world data has often features that help us humans to understand and interpret tables, like
headlines that span across multiple rows and columns, or descriptions before the data, and
footnotes after the data. In addition it is often mixed with totals and subtotals, so even if
the data is imported, it still requires a lot of data cleaning. There are ways how openxlsx2
can help in this regard. And while not necessarily required, actually looking at the data in a
spreadsheet software can help with its understanding.

The file we use is part of the publications from the US Census. “Table 1. Full-Time, Year-
RoundWorkers by Education, Sex, and Detailed Occupation: ACS 2022.” At the time available
at: https://www.census.gov/data/tables/2022/demo/acs-2022.html. The table is rather large
with multiple groups in columns and rows. 1.

4.2.1 Reading the data table

In a first step we import the entire workbook

a <- "https://www2.census.gov/programs-surveys/demo/tables/industry-occupation"
b <- "2022/Detailed_occupation_by_sex_and_education_ACS_2022_tab1.xlsx"
fl <- file.path(a, b)

wb <- wb_load(fl)

Once the workbook is loaded, we read the entire worksheet and try to get an understanding
how it looks like. For this we fill merged cells and remote the column name. After that we
can inspect it with View().

df <- wb_to_df(wb, fill_merged_cells = TRUE, col_names = FALSE,
skip_empty_cols = TRUE)

View(df)

1A backup of the file can be found here https://janmarvin.github.io/openxlsx-data/Detailed_occupation_by_
sex_and_education_ACS_2022_tab1.xlsx.

30

https://www.census.gov/data/tables/2022/demo/acs-2022.html
https://janmarvin.github.io/openxlsx-data/Detailed_occupation_by_sex_and_education_ACS_2022_tab1.xlsx
https://janmarvin.github.io/openxlsx-data/Detailed_occupation_by_sex_and_education_ACS_2022_tab1.xlsx

Using this we realize that the table has a few description rows ahead and a few footnotes below.
Numeric data starts in row 8 and ends in 605. The table spans columns A to BG. Therefore
our dimensions will look like this A7:BG605. We start one row earlier than the data we want
to read, because we expect a column name. In addition there are a few missing values that we
want to remove.

dims <- "A7:BG605"
df <- wb_to_df(wb, dims = dims, na.strings = c("-", "**", "#N/A"),

fill_merged_cells = TRUE)

4.2.2 Cleaning the indents

Not for every feature there is a custom function, but a lot of things can be done with openxlsx2.
The rows are grouped by occupation. This occupation is not visisble in the data frame above.
But since the information is available in the data, we can access it.

adaption of https://github.com/JanMarvin/openxlsx2/discussions/710
description_dims <- wb_dims(rows = as.integer(rownames(df)), cols = 1)
text <- wb_to_df(wb, dims = description_dims, col_names = FALSE)[[1]]
want <- wb$get_cell_style(dims = description_dims)

Get the styles for the range
styles <- wb$styles_mgr$styles$cellXfs[as.integer(want) + 1]

function to replace "" with "0"
zeros <- function(x) replace(x, x == "", "0")

now get the indentation alignment from the style
indents <- openxlsx2:::read_xf(read_xml(styles))$indent |>
zeros() |>
as.integer()

indent the text
itext <- NULL
for (i in seq_along(indents)) {

if (!is.na(indents[i])) {
itmp <- paste0(c(rep("__", indents[i]), text[i]), collapse = "")
itext <- c(itext, itmp)

} else {
itext <- c(itext, text[i])

}
}

31

return it
message(paste(head(itext, 10), collapse = "\n"))
#> Total
#> Management, Business, Science, and Arts Occupations:
#> __Management, Business, and Financial Occupations:
#> ____Management Occupations:
#> ______Chief executives
#> ______General and operations managers
#> ______Legislators
#> ______Advertising and promotions managers
#> ______Marketing managers
#> ______Sales managers

rownames(df) <- itext
df$indents <- indents

quite a long list and I am not sure every item has the correct indentation
in the spreadsheet
df_ind1 <- df[df$indents == 1, c("Estimate", "MOE2")]
head(df_ind1)
#> Estimate
#> __Management, Business, and Financial Occupations: 22620000
#> __Computer, Engineering, and Science Occupations: 9304000
#> __Education, Legal, Community Service, Arts, and Media Occupations: 11030000
#> __Chiropractors 43980
#> __Dentists 96470
#> __Dietitians and nutritionists 70760
#> MOE2
#> __Management, Business, and Financial Occupations: 92250
#> __Computer, Engineering, and Science Occupations: 74300
#> __Education, Legal, Community Service, Arts, and Media Occupations: 63890
#> __Chiropractors 4205
#> __Dentists 5520
#> __Dietitians and nutritionists 5135

4.2.3 Read selected dims

Lets say you have opened the file in a spreadsheet software and identified a few cells that you
want to read. You don’t want to read every cell, only a few occupations, and total estimates
for man and woman. Basically you have decided, that you want to import the cells with yellow
highlighting in the following screenshot.

32

Since your output contains non consecutive cells, which are basically a square, you can pass
them as a single dims string. In the dims string we treat header and column differently.
We can check with dims_to_dataframe("A6:B6,D6,H6,A12:B17,D12:D17,H12:H17", fill
= TRUE, empty_rm = TRUE) if our dims object works. Since we see no blanks, every cell is
matched.

wb_to_df(
wb,
dims = "A6:B6,D6,H6,A12:B17,D12:D17,H12:H17",
fill_merged_cells = TRUE

)
#> Occupational Category Total Men Women
#> 12 Chief executives 1289000 915800 373400
#> 13 General and operations managers 1104000 727700 376300
#> 14 Legislators 11090 6505 4585
#> 15 Advertising and promotions managers 46220 20360 25860
#> 16 Marketing managers 512500 200600 311900
#> 17 Sales managers 510400 352900 157500

And another table, this time without a separate header row.

33

To read the orange cells, the following command can be used:

wb_to_df(
wb,
dims = "A7:A8,L7:M8,P7:Q8",
fill_merged_cells = TRUE

)
#> Occupational Category Estimate MOE2 Estimate MOE2
#> 8 Total 58140000 156600 34950000 103100

4.2.4 Read data header and body in parts

Using only the last row right above the data, can result in many duplicated column names.
It is not always possible to avoid this, but sometimes it is possible to create a unique name
combining the multiple header rows. In the code below, we read two df objects, the df_head
and the df_body. Once the data is imported, it is straightforward to modify the df_head
object to create a unique column name.

read body
dims <- "A8:BG605"
df_body <- wb_to_df(wb, dims = dims, na.strings = c("-", "**", "#N/A"),

fill_merged_cells = TRUE, col_names = FALSE)

read header
dims <- "A5:BG7"
df_head <- wb_to_df(wb, dims = dims, na.strings = c("-", "**", "#N/A"),

fill_merged_cells = TRUE, col_names = FALSE)

create single header string. remove all spaces, unique values. collapse on dot
nams <- vapply(names(df_head), function(x) {
paste0(gsub("[\t\r\n]", "_", unique(trimws(df_head[[x]]))), collapse = ".")
}, NA_character_)

check that names in body and head match
stopifnot(all(names(df_body) %in% names(nams)))

assign names and create output object, avoid duplicates
df <- setNames(df_body, make.names(nams, unique = TRUE))

a few names of the workbook
head(names(df), 10)
#> [1] "Occupational_Category" "Total.Estimate"

34

#> [3] "Total.MOE2" "Total.Men.Estimate"
#> [5] "Total.Men.MOE2" "Total.Men.Percent_of_Total"
#> [7] "Total.Men.MOE2.1" "Total.Women.Estimate"
#> [9] "Total.Women.MOE2" "Total.Women.Percent_of_Total"

a glimpse of the new object
head(df[seq_len(5)])
#> Occupational_Category Total.Estimate
#> 8 Total 102800000
#> 9 Management, Business, Science, and Arts Occupations: 49810000
#> 10 Management, Business, and Financial Occupations: 22620000
#> 11 Management Occupations: 15080000
#> 12 Chief executives 1289000
#> 13 General and operations managers 1104000
#> Total.MOE2 Total.Men.Estimate Total.Men.MOE2
#> 8 138800 57980000 90250
#> 9 160000 25080000 106700
#> 10 92250 12310000 63260
#> 11 73430 8828000 54810
#> 12 21490 915800 20110
#> 13 18650 727700 14240

Given enough knowledge about certain data files, it is often possible to identify cells, similar
to VLOOKUP() in spreadsheets. In our case, we could maybe make use of e.g. which(df$A ==
"Total") or int2col(which(df[6,] == "Men")). But such cases require a bit more hand
tailored solutions. From experience the most important thing is to remain doubtful about the
data imported. There are many things that can go wrong, like picking the wrong column, or
the wrong spreadsheet. Don’t be shy to check your work against spreadsheet software. Again
and again.

4.2.5 Bonus: clean up this xlsx table

Obviously something is wrong in the xlsx file. We have already worked with the data, so lets
see if we can clean it up.

fix some broken indentation in the file - this is only to please my OCD
sel <- seq.int(
which(text == "Healthcare Practitioners and Technical Occupations:"),
which(text == "Other healthcare practitioners and technical occupations")

)
indents[sel] <- indents[sel] + 1L

35

sel <- seq.int(
which(text == "Healthcare Practitioners and Technical Occupations:") + 1L,
which(text == "Other production workers")

)
indents[sel] <- indents[sel] + 1L

create_groups <- function(sequence) {

Create a data frame
df <- data.frame(Index = seq_along(sequence), Value = sequence)

Calculate Supergroup, Group, and Subgroup identifiers
df$Supergroup <- cumsum(df$Value == 0)
df$Group <- cumsum(df$Value == 1)
df$Subgroup <- cumsum(df$Value == 2)

Fill NA values for non-group entries
df$Supergroup <- ifelse(df$Value == 0, df$Supergroup, NA)
df$Group <- ifelse(df$Value == 1, df$Group, NA)
df$Subroup <- ifelse(df$Value == 2, df$Group, NA)

#nolint start
as.data.frame(

tidyr::fill(df, Supergroup, Group, Subgroup, .direction = "down")
)
#nolint end

}

df$Index <- seq_len(nrow(df))
df$Value <- indents

each duplicated MOE2 is a percent value
df <- merge(x = df, y = create_groups(indents), by = c("Index", "Value"),

sort = FALSE)

vars <- c("Occupational_Category", "Total.Estimate", "Total.MOE2",
"Supergroup", "Group", "Subgroup")

tab <- df[df$Value == 3, vars]
rownames(tab) <- NULL

aggregate(Total.Estimate ~ Supergroup, data = tab, sum)
#> Supergroup Total.Estimate

36

#> 1 2 102819245
aggregate(Total.Estimate ~ Group, data = tab, sum)
#> Group Total.Estimate
#> 1 1 22622315
#> 2 2 9304335
#> 3 3 11029725
#> 4 4 6853765
#> 5 5 11841230
#> 6 6 18861045
#> 7 7 9240130
#> 8 8 6044450
#> 9 9 7022250

37

5 Of strings and numbers

Contrary to R, spreadsheets do not require identical data types. While in R a column always
consists of a unique type (the base types supported by openxlsx2 are character, integer,
numeric, Date, and POSIXct/POSIXlt), spreadsheets might consist of arbitrary mixes of data
types. E.g. it is not uncommon, to have tables consisting of multiple rows. In addition
some spreadsheet software has issues identifying certain date types and a well known issue of
spreadsheets is the number stored as text error. Below we will describe ways to write data with
openxlsx2 and how to handle the most common types characters and numerics. Though in
addition openxlsx2 also supports dates, date formats and makes use of the hms date class.

library(openxlsx2)

wb <- wb_workbook()

5.1 Default numeric data frame

Using a few rows of the cars data frame we show how to write numerics. The strings are left
aligned and the numbers right aligned.

default data frame
dat <- data.frame(
speed = c(4, 4, 7, 7, 8, 9),
dist = c(2, 10, 4, 22, 16, 10)

)

Consisting only of numerics
str(dat)
#> 'data.frame': 6 obs. of 2 variables:
#> $ speed: num 4 4 7 7 8 9
#> $ dist : num 2 10 4 22 16 10

wb$add_worksheet("dat")$add_data(x = dat)

38

5.2 Writing missing values

Writing missing values to a spreadsheet (NA, NA_character_, NA_integer_, and NA_real_)
results in the missing value to appear as the #N/A expression in spreadsheet software. Still
there are multiple ways to create missing values, below are the three common solutions. If
the default is unwanted na.strings = NULL, creates a blank cell and na.strings = "N/A"
creates a character string "N/A". There is a subtle difference between na.strings = NULL and
na.strings = "". The latter creates a string "" whereas the former leaves the cell mostly
untouched, aka there is no cell type attached to it. Unless some form of styling is attached to
such a cell, it will be omitted when saving the file as xlsx. This reduces the file size of these
sparse matrices significantly, because only cells that contain some kind of information will be
written to the output.

example matrix
mm <- matrix(seq_len(9), 3, 3)
diag(mm) <- NA

dims_1 <- wb_dims(x = mm)
dims_2 <- wb_dims(x = mm, from_dims = dims_1, right = 2)
dims_3 <- wb_dims(x = mm, from_dims = dims_2, right = 2)

wb$add_worksheet("missings")
the default writes the expression #NA
wb$add_data(dims = dims_1, x = mm)$add_border(dims = dims_1)
writes nothing, keeps the cell blank
wb$add_data(dims = dims_2, x = mm, na.strings = NULL)$add_border(dims = dims_2)
writes the string N/A
wb$add_data(dims = dims_3, x = mm, na.strings = "N/A")$add_border(dims = dims_3)

5.3 Writing vectors

When writing vectors, the default direction is vertically. But this can be changed. It is possible
to write vectors horizontally, if this is indicated via dims. In addition it is possible to enforce
non-consecutive dimensions.

39

wb$add_worksheet("vectors")

vertical
wb$add_data(x = 1:4)

horizontal
wb$add_data(x = 1:4, dims = "C2:F2")

mixed
wb$add_data(x = 1:4, dims = "C5,D4,E5,F4", enforce = TRUE)

5.4 Data frame with multiple row header

Now we alter the data frame with a second row adding the column label. Since R does not
know mixed column types the entire data frame is converted to characters.

add subtitle to the data
dat_w_subtitle <- data.frame(
speed = c("Speed (mph)", 4, 4, 7, 7, 8, 9),
dis = c("Stopping distance (ft)", 2, 10, 4, 22, 16, 10)

)
Check that both columns are character
str(dat_w_subtitle)
#> 'data.frame': 7 obs. of 2 variables:
#> $ speed: chr "Speed (mph)" "4" "4" "7" ...
#> $ dis : chr "Stopping distance (ft)" "2" "10" "4" ...

write data as is. this creates number stored as text error
this can be surpressed with: wb_add_ignore_error(number_stored_as_text)
wb$add_worksheet("dat_w_subtitle")$add_data(x = dat_w_subtitle)

Now the data is written as strings. Therefore the numbers are not written as 4, but as "4".
In the openxml format characters are treated differently as numbers and are stored as inline
strings (openxlsx2 default) or as shared string. The file loads fine, but now all cells are
right aligned and the previous numeric cells are all showing the number stored as text error.
Spreadsheet software will treat these cells independently of the data type, so it does not matter
other that the error is thrown and that number formats are not applied.

Since conversions to character are sometimes not wanted, we provide a way to detect these
numbers stored as text and will convert them when the data is written into the workbook.

40

write character string, but write string numbers as numerics
options("openxlsx2.string_nums" = TRUE)
wb$add_worksheet("string_nums")$add_data(x = dat_w_subtitle)
options("openxlsx2.string_nums" = NULL)

This way the data is written as numerics, but still right aligned. This is due to the cell style,
otherwise it looks entirely identical to previous attempt. Since this conversion is not generally
wanted this option needs to be enabled explicitly. Generally openxlsx2 assumes that the users
are mature and want what they request.

5.5 How to write multiple header rows?

The better approach to avoid the entire conversion is to write the column headers and the
column data separately. The recommended approach to this would be something like this:

wb$add_worksheet("characters and numbers")$
add_data(x = dat_w_subtitle[1,])$
add_data(dims = wb_dims(x = dat, col_names = FALSE, from_row = 3),

x = dat, col_names = FALSE)

5.6 Labelled data

In addition to pure numbers and characters it is also possible to write labelled vectors such
as factors or columns modified with the labelled package.

Factors
x <- c("Man", "Male", "Man", "Lady", "Female")
xf <- factor(x, levels = c("Male", "Man", "Lady", "Female"),

labels = c("Male", "Male", "Female", "Female"))

wb$add_worksheet("factors")$add_data(x = data.frame(x, xf))

Labelled
v <- labelled::labelled(
c(1, 2, 2, 2, 3, 9, 1, 3, 2, NA),
c(yes = 1, no = 3, "don't know" = 8, refused = 9)

)

wb$add_worksheet("labelled")$add_data(x = v)

41

5.7 Hour - Minute - Second

If the hms package is loaded openxlsx2 makes use of this as well. Otherwise the data would
be returned as

set.seed(123)
wb$add_worksheet("hms")$add_data(x = hms::hms(sample(1:100000, 5, TRUE)))

df <- wb_to_df(wb, sheet = "hms")
str(df)
#> 'data.frame': 4 obs. of 1 variable:
#> $ 14:21:03: 'hms' num 16:04:30 00:49:46 08:18:45 26:27:26
#> ..- attr(*, "tzone")= chr "UTC"

unloadNamespace("hms")
df <- wb_to_df(wb, sheet = "hms")
str(df)
#> 'data.frame': 4 obs. of 1 variable:
#> $ 14:21:03: chr "16:04:30" "00:49:46" "08:18:45" "02:27:26"

42

6 Styling of worksheets

Welcome to the styling manual for openxlsx2. In this manual you will learn how to use
openxlsx2 to style your worksheets. data from xlsx-files to R as well as how to export data
from R to xlsx, and how to import and modify these openxml workbooks in R.

6.1 Colors, text rotation and number formats

Below we show you two ways how to create styled tables with openxlsx2 one using the high
level functions to style worksheet areas and one using the bare metal approach of creating the
identical table. We show both ways to create styles in openxlsx2 to show how you could build
on our functions or create your very own functions.

Figure 6.1: The example below, with increased column width.

6.1.1 the quick way: using high level functions

library(openxlsx2)

add some dummy data
set.seed(123)
mat <- matrix(rnorm(28 * 28, mean = 44444, sd = 555), ncol = 28)

43

colnames(mat) <- make.names(seq_len(ncol(mat)))
border_col <- wb_color(theme = 1)
border_sty <- "thin"

prepare workbook with data and formated first row
wb <- wb_workbook() |>
wb_add_worksheet("test") |>
wb_add_data(x = mat) |>
wb_add_border(dims = "A1:AB1",

top_color = border_col, top_border = border_sty,
bottom_color = border_col, bottom_border = border_sty,
left_color = border_col, left_border = border_sty,
right_color = border_col, right_border = border_sty,
inner_hcolor = border_col, inner_hgrid = border_sty

) |>
wb_add_fill(dims = "A1:AB1", color = wb_color(hex = "FF334E6F")) |>
wb_add_font(dims = "A1:AB1", name = "Arial", bold = TRUE,

color = wb_color(hex = "FFFFFFFF"), size = 20) |>
wb_add_cell_style(dims = "A1:AB1", horizontal = "center", text_rotation = 45)

create various number formats
x <- c(
0, 1, 2, 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
37, 38, 39, 40, 45, 46, 47, 48, 49

)

apply the styles
for (i in seq_along(x)) {
cell <- sprintf("%s2:%s29", int2col(i), int2col(i))
wb <- wb |> wb_add_numfmt(dims = cell, numfmt = x[i])

}

wb$open()

6.1.2 the long way: using bare metal functions

create workbook
wb <- wb_workbook() |> wb_add_worksheet("test")

add some dummy data to the worksheet

44

set.seed(123)
mat <- matrix(rnorm(28 * 28, mean = 44444, sd = 555), ncol = 28)
colnames(mat) <- make.names(seq_len(ncol(mat)))
wb$add_data(x = mat, col_names = TRUE)

create a border style and assign it to the workbook
black <- wb_color(hex = "FF000000")
new_border <- create_border(
bottom = "thin", bottom_color = black,
top = "thin", top_color = black,
left = "thin", left_color = black,
right = "thin", right_color = black

)
wb$styles_mgr$add(new_border, "new_border")

create a fill style and assign it to the workbook
new_fill <- create_fill(patternType = "solid",

fgColor = wb_color(hex = "FF334E6F"))
wb$styles_mgr$add(new_fill, "new_fill")

create a font style and assign it to the workbook
new_font <- create_font(sz = 20, name = "Arial", b = TRUE,

color = wb_color(hex = "FFFFFFFF"))
wb$styles_mgr$add(new_font, "new_font")

create a new cell style, that uses the fill, the font and the border style
new_cellxfs <- create_cell_style(
num_fmt_id = 0,
horizontal = "center",
text_rotation = 45,
fill_id = wb$styles_mgr$get_fill_id("new_fill"),
font_id = wb$styles_mgr$get_font_id("new_font"),
border_id = wb$styles_mgr$get_border_id("new_border")

)
assign this style to the workbook
wb$styles_mgr$add(new_cellxfs, "new_styles")

assign the new cell style to the header row of our data set
cell <- sprintf("A1:%s1", int2col(nrow(mat)))
wb <- wb |> wb_set_cell_style(
dims = cell,

45

style = wb$styles_mgr$get_xf_id("new_styles")
)

style the cells with some builtin format codes (no new numFmt entry is
needed). add builtin style ids
x <- c(
1, 2, 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
37, 38, 39, 40, 45, 46, 47, 48, 49

)

create styles
new_cellxfs <- create_cell_style(num_fmt_id = x, horizontal = "center")

assign the styles to the workbook
for (i in seq_along(x)) {
wb$styles_mgr$add(new_cellxfs[i], paste0("new_style", i))

}

new styles are 1:28
new_styles <- wb$styles_mgr$get_xf()
for (i in as.integer(new_styles$id[new_styles$name %in%

paste0("new_style", seq_along(x))])) {
cell <- sprintf("%s2:%s29", int2col(i), int2col(i))
wb <- wb |> wb_set_cell_style(dims = cell, style = i)

}

assign a custom tabColor
wb$worksheets[[1]]$sheetPr <- xml_node_create(
"sheetPr",
xml_children = xml_node_create(

"tabColor",
xml_attributes = wb_color(hex = "FF00FF00")

)
)

look at the beauty you've created
wb_open(wb)

46

6.2 Working with number formats

6.2.1 numfmts

Per default openxlsx2 will pick up number formats for selected R classes.

Create Workbook object and add worksheets
wb <- wb_workbook()
wb$add_worksheet("S1")
wb$add_worksheet("S2")

df <- data.frame(
"Date" = Sys.Date() - 0:19,
"T" = TRUE, "F" = FALSE,
"Time" = Sys.time() - 0:19 * 60 * 60,
"Cash" = 1:20, "Cash2" = 31:50,
"hLink" = "https://CRAN.R-project.org/",
"Percentage" = seq(0, 1, length.out = 20),
"TinyNumbers" = runif(20) / 1E9, stringsAsFactors = FALSE

)

openxlsx will apply default Excel styling for these classes
class(df$Cash) <- c(class(df$Cash), "currency")
class(df$Cash2) <- c(class(df$Cash2), "accounting")
class(df$hLink) <- "hyperlink"
class(df$Percentage) <- c(class(df$Percentage), "percentage")
class(df$TinyNumbers) <- c(class(df$TinyNumbers), "scientific")

wb$add_data("S1", x = df, start_row = 4, row_names = FALSE)
wb$add_data_table("S2", x = df, start_row = 4, row_names = FALSE)

47

6.2.2 numfmts2

In addition, you can set the style to be picked up using openxlsx2 options.

wb <- wb_workbook()
wb <- wb_add_worksheet(wb, "test")

options("openxlsx2.dateFormat" = "yyyy")
options("openxlsx2.datetimeFormat" = "yyyy-mm-dd")
options("openxlsx2.numFmt" = "€ #.0")

df <- data.frame(
"Date" = Sys.Date() - 0:19,
"T" = TRUE, "F" = FALSE,
"Time" = Sys.time() - 0:19 * 60 * 60,
"Cash" = 1:20, "Cash2" = 31:50,
"hLink" = "https://CRAN.R-project.org/",
"Percentage" = seq(0, 1, length.out = 20),
"TinyNumbers" = runif(20) / 1E9, stringsAsFactors = FALSE,
"numeric" = 1

)

openxlsx will apply default Excel styling for these classes
class(df$Cash) <- c(class(df$Cash), "currency")
class(df$Cash2) <- c(class(df$Cash2), "accounting")
class(df$hLink) <- "hyperlink"
class(df$Percentage) <- c(class(df$Percentage), "percentage")
class(df$TinyNumbers) <- c(class(df$TinyNumbers), "scientific")

48

wb$add_data("test", df)

disable styles via options
options("openxlsx2.dateFormat" = NULL)
options("openxlsx2.datetimeFormat" = NULL)
options("openxlsx2.numFmt" = NULL)

6.3 Modifying the column and row widths

6.3.1 wb_set_col_widths

wb <- wb_workbook() |>
wb_add_worksheet() |>
wb_add_data(x = mtcars, row_names = TRUE)

cols_1 <- 1:6
cols_2 <- "G:L"
wb <- wb |>
wb_set_col_widths(cols = cols_1, widths = "auto") |>
wb_set_col_widths(cols = cols_2, widths = 10)

6.3.2 wb_set_row_heigths

49

wb <- wb |>
wb_set_row_heights(rows = 1:10, heights = 10)

6.4 Adding borders

6.4.1 add borders

wb <- wb_workbook()
full inner grid
wb$add_worksheet("S1", grid_lines = FALSE)$add_data(x = mtcars)
wb$add_border(
dims = "A2:K33",
inner_hgrid = "thin", inner_hcolor = wb_color(hex = "FF808080"),
inner_vgrid = "thin", inner_vcolor = wb_color(hex = "FF808080")

)
only horizontal grid
wb$add_worksheet("S2", grid_lines = FALSE)$add_data(x = mtcars)
wb$add_border(dims = wb_dims(x = mtcars, select = "data"), inner_hgrid = "thin",

inner_hcolor = wb_color(hex = "FF808080"))
only vertical grid
wb$add_worksheet("S3", grid_lines = FALSE)$add_data(x = mtcars)
wb$add_border(dims = wb_dims(x = mtcars, select = "data"),

inner_vgrid = "thin", inner_vcolor = wb_color(hex = "FF808080"))
no inner grid
wb$add_worksheet("S4", grid_lines = FALSE)$add_data(x = mtcars)
wb$add_border("S4", dims = wb_dims(x = mtcars, select = "data"))

50

6.4.2 styled table

Below we show you two ways how to create styled tables with openxlsx2 one using the high
level functions to style worksheet areas and one using the bare metal approach of creating the
identical table.

6.4.2.1 the quick way: using high level functions

51

add some dummy data to the worksheet
mat <- matrix(1:4, ncol = 2, nrow = 2)
colnames(mat) <- make.names(seq_len(ncol(mat)))

dims_head <- wb_dims(x = mat, from_col = 2, from_row = 2, select = "col_names")
dims_data <- wb_dims(x = mat, from_col = 2, from_row = 2, select = "data")

wb <- wb_workbook() |>
wb_add_worksheet("test") |>
wb_add_data(x = mat, col_names = TRUE, start_col = 2, start_row = 2) |>
center first row
wb_add_cell_style(dims = dims_head, horizontal = "center") |>
add border for first row
wb_add_border(

dims = dims_head,
bottom_color = wb_color(theme = 1), bottom_border = "thin",
top_color = wb_color(theme = 1), top_border = "double",
left_border = NULL, right_border = NULL

) |>
add border for last row
wb_add_border(

dims = dims_data,
bottom_color = wb_color(theme = 1), bottom_border = "double",
top_border = NULL, left_border = NULL, right_border = NULL

)

6.4.2.2 the long way: creating everything from the bone

add some dummy data to the worksheet
mat <- matrix(1:4, ncol = 2, nrow = 2)
colnames(mat) <- make.names(seq_len(ncol(mat)))

wb <- wb_workbook() |>
wb_add_worksheet("test") |>
wb_add_data(x = mat, start_col = 2, start_row = 2)

create a border style and assign it to the workbook
black <- wb_color(hex = "FF000000")
top_border <- create_border(
top = "double", top_color = black,

52

bottom = "thin", bottom_color = black
)

bottom_border <- create_border(bottom = "double", bottom_color = black)

wb$styles_mgr$add(top_border, "top_border")
wb$styles_mgr$add(bottom_border, "bottom_border")

create a new cell style, that uses the fill, the font and the border style
top_cellxfs <- create_cell_style(
numFmtId = 0,
horizontal = "center",
borderId = wb$styles_mgr$get_border_id("top_border")

)
bottom_cellxfs <- create_cell_style(
numFmtId = 0,
borderId = wb$styles_mgr$get_border_id("bottom_border")

)

assign this style to the workbook
wb$styles_mgr$add(top_cellxfs, "top_styles")
wb$styles_mgr$add(bottom_cellxfs, "bottom_styles")

assign the new cell style to the header row of our data set
cell <- "B2:C2"
wb <- wb |> wb_set_cell_style(dims = cell,

style = wb$styles_mgr$get_xf_id("top_styles"))
cell <- "B4:C4"
wb <- wb |> wb_set_cell_style(dims = cell,

style = wb$styles_mgr$get_xf_id("bottom_styles"))

6.5 Use workbook colors and modify them

The loop below will apply the tint attribute to the fill color

53

Figure 6.2: Tint variations of the theme colors.

wb <- wb_workbook() |> wb_add_worksheet("S1")

tints <- seq(-0.9, 0.9, by = 0.1)

for (i in 0:9) {
for (tnt in tints) {

col <- paste0(int2col(i + 1), which(tints %in% tnt))

if (tnt == 0) {
wb <- wb |> wb_add_fill(dims = col,

color = wb_color(theme = i))
} else {
wb <- wb |> wb_add_fill(dims = col,

color = wb_color(theme = i, tint = tnt))
}

}
}

54

6.6 Copy cell styles

It is possible to copy the styles of several cells at once. In the following example, the styles of
some cells from a formatted workbook are applied to a previously empty cell range. Be careful
though, wb_get_cell_style() returns only some styles, so you have to make sure that the
copy-from and copy-to dimensions match in a meaningful way.

xl <- system.file("extdata", "oxlsx2_sheet.xlsx", package = "openxlsx2")
wb <- wb_load(xl)
wb$set_cell_style(1, "A30:G35", wb$get_cell_style(1, "A10:G15"))
wb_open(wb)

55

6.7 Style strings

Using fmt_txt() is possible to style strings independently of the cell containing the string.

txt <-
fmt_txt("Embracing the full potential of ") +
fmt_txt("openxlsx2", bold = TRUE, size = 16) +

56

fmt_txt(" with ") +
fmt_txt("fmt_txt()", font = "Courier") +
fmt_txt(" !")

wb <- wb_workbook()$add_worksheet()$add_data(x = txt, col_names = FALSE)

As shown above it is possible to combine multiple styles together into a longer string. It is
even possible to use fmt_txt() as na.strings:

df <- mtcars
df[df < 4] <- NA

na_red <- fmt_txt("N/A", color = wb_color("red"), italic = TRUE, bold = TRUE)

wb <- wb_workbook()$add_worksheet()$add_data(x = df, na.strings = na_red)

57

6.8 Create custom table styles

With create_tablestyle() it is possible to create your own table styles. This function uses
create_dxfs_style() (just like your spreadsheet software does). Therefore, it is not quite
as user-friendly. The following example shows how the function creates a red table style. The
various dxfs styles must be created and assigned to the workbook (similar styles are used in
conditional formatting). In create_tablestyle() these styles are assigned to the table style
elements. Once the table style is created, it must also be assigned to the workbook. After that
you can use it in the workbook like any other table style.

a red table style
dx0 <- create_dxfs_style(
border = TRUE,
left_color = wb_color("red"),
right_color = NULL, right_style = NULL,
top_color = NULL, top_style = NULL,
bottom_color = NULL, bottom_style = NULL

)

dx1 <- create_dxfs_style(
border = TRUE,
left_color = wb_color("red"),
right_color = NULL, right_style = NULL,
top_color = NULL, top_style = NULL,
bottom_color = NULL, bottom_style = NULL

)

dx2 <- create_dxfs_style(
border = TRUE,
top_color = wb_color("red"),
left_color = NULL, left_style = NULL,
right_color = NULL, right_style = NULL,
bottom_color = NULL, bottom_style = NULL

)

dx3 <- create_dxfs_style(
border = TRUE,
top_color = wb_color("red"),
left_color = NULL, left_style = NULL,
right_color = NULL, right_style = NULL,
bottom_color = NULL, bottom_style = NULL

)

58

dx4 <- create_dxfs_style(
text_bold = TRUE

)

dx5 <- create_dxfs_style(
text_bold = TRUE

)

dx6 <- create_dxfs_style(
font_color = wb_color("red"),
text_bold = TRUE,
border = TRUE,
top_style = "double",
left_color = NULL, left_style = NULL,
right_color = NULL, right_style = NULL,
bottom_color = NULL, bottom_style = NULL

)

dx7 <- create_dxfs_style(
font_color = wb_color("white"),
text_bold = TRUE,
bgFill = wb_color("red"),
fgColor = wb_color("red")

)

dx8 <- create_dxfs_style(
border = TRUE,
left_color = wb_color("red"),
top_color = wb_color("red"),
right_color = wb_color("red"),
bottom_color = wb_color("red")

)

wb <- wb_workbook() |>
wb_add_worksheet(grid_lines = FALSE)

wb$add_style(dx0)
wb$add_style(dx1)
wb$add_style(dx2)
wb$add_style(dx3)
wb$add_style(dx4)

59

wb$add_style(dx5)
wb$add_style(dx6)
wb$add_style(dx7)
wb$add_style(dx8)

finally create the table
xml <- create_tablestyle(
name = "red_table",
whole_table = wb$styles_mgr$get_dxf_id("dx8"),
header_row = wb$styles_mgr$get_dxf_id("dx7"),
total_row = wb$styles_mgr$get_dxf_id("dx6"),
first_column = wb$styles_mgr$get_dxf_id("dx5"),
last_column = wb$styles_mgr$get_dxf_id("dx4"),
first_row_stripe = wb$styles_mgr$get_dxf_id("dx3"),
second_row_stripe = wb$styles_mgr$get_dxf_id("dx2"),
first_column_stripe = wb$styles_mgr$get_dxf_id("dx1"),
second_column_stripe = wb$styles_mgr$get_dxf_id("dx0")

)

wb$add_style(xml)

create a table and apply the custom style
wb <- wb |>
wb_add_data_table(x = mtcars, table_style = "red_table")

60

6.9 Named styles

wb <- wb_workbook()$add_worksheet()

name <- "Normal"
dims <- "A1"
wb$add_data(dims = dims, x = name)

name <- "Bad"
dims <- "B1"
wb$add_named_style(dims = dims, name = name)
wb$add_data(dims = dims, x = name)

name <- "Good"
dims <- "C1"
wb$add_named_style(dims = dims, name = name)
wb$add_data(dims = dims, x = name)

name <- "Neutral"
dims <- "D1"
wb$add_named_style(dims = dims, name = name)
wb$add_data(dims = dims, x = name)

name <- "Calculation"
dims <- "A2"
wb$add_named_style(dims = dims, name = name)
wb$add_data(dims = dims, x = name)

name <- "Check Cell"
dims <- "B2"
wb$add_named_style(dims = dims, name = name)
wb$add_data(dims = dims, x = name)

name <- "Explanatory Text"
dims <- "C2"
wb$add_named_style(dims = dims, name = name)
wb$add_data(dims = dims, x = name)

name <- "Input"
dims <- "D2"
wb$add_named_style(dims = dims, name = name)

61

wb$add_data(dims = dims, x = name)

name <- "Linked Cell"
dims <- "E2"
wb$add_named_style(dims = dims, name = name)
wb$add_data(dims = dims, x = name)

name <- "Note"
dims <- "F2"
wb$add_named_style(dims = dims, name = name)
wb$add_data(dims = dims, x = name)

name <- "Output"
dims <- "G2"
wb$add_named_style(dims = dims, name = name)
wb$add_data(dims = dims, x = name)

name <- "Warning Text"
dims <- "H2"
wb$add_named_style(dims = dims, name = name)
wb$add_data(dims = dims, x = name)

name <- "Heading 1"
dims <- "A3"
wb$add_named_style(dims = dims, name = name)
wb$add_data(dims = dims, x = name)

name <- "Heading 2"
dims <- "B3"
wb$add_named_style(dims = dims, name = name)
wb$add_data(dims = dims, x = name)

name <- "Heading 3"
dims <- "C3"
wb$add_named_style(dims = dims, name = name)
wb$add_data(dims = dims, x = name)

name <- "Heading 4"
dims <- "D3"
wb$add_named_style(dims = dims, name = name)
wb$add_data(dims = dims, x = name)

62

name <- "Title"
dims <- "E3"
wb$add_named_style(dims = dims, name = name)
wb$add_data(dims = dims, x = name)

name <- "Total"
dims <- "F3"
wb$add_named_style(dims = dims, name = name)
wb$add_data(dims = dims, x = name)

for (i in seq_len(6)) {

name <- paste0("20% - Accent", i)
dims <- paste0(int2col(i), "4")
wb$add_named_style(dims = dims, name = name)
wb$add_data(dims = dims, x = name)

name <- paste0("40% - Accent", i)
dims <- paste0(int2col(i), "5")
wb$add_named_style(dims = dims, name = name)
wb$add_data(dims = dims, x = name)

name <- paste0("60% - Accent", i)
dims <- paste0(int2col(i), "6")
wb$add_named_style(dims = dims, name = name)
wb$add_data(dims = dims, x = name)

name <- paste0("Accent", i)
dims <- paste0(int2col(i), "7")
wb$add_named_style(dims = dims, name = name)
wb$add_data(dims = dims, x = name)

}

name <- "Comma"
dims <- "A8"
wb$add_named_style(dims = dims, name = name)
wb$add_data(dims = dims, x = name)

name <- "Comma [0]"
dims <- "B8"
wb$add_named_style(dims = dims, name = name)

63

wb$add_data(dims = dims, x = name)

name <- "Currency"
dims <- "C8"
wb$add_named_style(dims = dims, name = name)
wb$add_data(dims = dims, x = name)

name <- "Currency [0]"
dims <- "D8"
wb$add_named_style(dims = dims, name = name)
wb$add_data(dims = dims, x = name)

name <- "Per cent"
dims <- "E8"
wb$add_named_style(dims = dims, name = name)
wb$add_data(dims = dims, x = name)

wb$open()

6.10 Styled columns / rows

In addition to individually styled cells, spreadsheets can also have styled columns and rows.
Though, these column and row styles are overridden by cell styles. Therefore, if a row is filled
with yellow, initialized cells in this row are not impacted by the yellow color. Therefore it is
required to individually style these cells too.

64

wb <- wb_workbook()

make the entire thing yellow (pick the style from an exisisting cell)
wb$add_worksheet("cols")$add_fill(color = wb_color("yellow"))
wb$set_cell_style_across(cols = "A:XFD", style = wb$get_cell_style(dims = "A1"))

create an orange cell style
f1 <- create_fill(patternType = "solid", fgColor = wb_color("orange"))
wb$add_style(f1, "f1")

s1 <- create_cell_style(fill_id = wb$styles_mgr$get_fill_id("f1"))
wb$add_style(s1, "s1")

fill all rows with this orange cell style
wb$add_worksheet("rows")
wb$set_cell_style_across(rows = seq_len(1048576),

style = wb$styles_mgr$get_xf_id("s1"))

show what happens
mm <- matrix(1:4, 2, 2)
dims <- wb_dims(x = mm, from_dims = "B2", x = mm, col_names = FALSE)

wb$add_data(sheet = "cols", dims = dims, x = mm, col_names = FALSE)
wb$add_data(sheet = "rows", dims = dims, x = mm, col_names = FALSE)

Styling columns and rows is quicker and memory efficient. In the first example all columns
are modified, but the entire modification can be boiled down to a single XML string.

A neat example of this is the following: a user wanted to lock certain cells on a worksheet. To
achieve this, we have to apply an unlocked style to the entire worksheet. Afterwards we can
select a few cells that we want to lock.

65

wb <- wb_workbook()$add_worksheet()

create an unlocked cell style
s1 <- create_cell_style(locked = FALSE)
wb$add_style(s1, "s1")

apply this to the entire worksheet
wb$set_cell_style_across(cols = "A:XFD", style = "s1")

locked a few cells
dims_list <- c(
wb_dims(1:3, 3:10),
wb_dims(5:10, 8:12),
wb_dims(100:105, 300:408)

)

lock a few ranges and highlight these in red
for (dims in dims_list) {
message("locking: ", dims)
wb$add_fill(dims = dims, color = wb_color("red"))
wb$add_cell_style(dims = dims, locked = TRUE)

}
#> locking: C1:J3
#> locking: H5:L10
#> locking: KN100:OR105

protect the worksheet and the workbook
wb$protect_worksheet()
wb$protect()

6.11 Styling with dims

It is possible to style multiple cells at once using dims. This is way faster than looping over
rows, columns or both as would be required in the example below.

set.seed(123)
mm <- matrix(sample(0:1, 2500, TRUE), 50, 50)

zeros <- as.data.frame(which(mm == 0, arr.ind = TRUE))
ones <- as.data.frame(which(mm == 1, arr.ind = TRUE))

66

dims_z <- paste0(mapply(rowcol_to_dims, zeros$row, zeros$col), collapse = ",")
dims_o <- paste0(mapply(rowcol_to_dims, ones$row, ones$col), collapse = ",")

wb <- wb_workbook()$add_worksheet()$
add_data(x = mm, col_names = FALSE)$
add_fill(dims = dims_z, color = wb_color("lightgray"))$
add_fill(dims = dims_o, color = wb_color("darkgray"))

67

7 Conditional Formatting, Databars, and
Sparklines

With openxlsx2 it is possible to add conditional formatting, databars, and sparklines to the
spreadsheet as a dynamic layer to data visualization, enhancing the interpretation and analysis
of information. They help with presenting complex data sets, providing a visual representation
that goes beyond raw numbers. It is possible to modify each with various style options.

1. Conditional Formatting: Conditional formatting enables users to apply a cell style
overlay based on predefined rules. This can highlight patterns, trends, and anomalies within
the data. The rules make it possible to provide a visual highlighting without having to style
every cell individually.

2. Databars: Databars are a specific type of conditional formatting that adds horizontal
bars within cells to represent the values they contain. Similar to a barplot just spreading as
an overlay across multiple rows. The length of the bar corresponds to the magnitude of the
data, allowing for a quick and intuitive comparison between different values.

3. Sparklines: Sparklines are compact, miniature charts embedded within a single cell,
offering a condensed visual representation of trends or variations in a dataset. These tiny
graphs, such as line charts, bar charts, or win/loss charts, provide a quick overview of the
data’s trajectory without the need for a separate chart. Sparklines are especially valuable
when it is required to maintain a compact layout while still conveying the overall patterns in
the data.

7.1 Conditional Formatting

Conditional formatting is helpful to visually emphasize trends, outliers, or other important
aspects of the data it is applied to. In openxlsx2 conditional formatting is applied as follows:

1. Select dimension range: First select, the range of cells to which the conditional formatting
is applied to.

2. Define a rule: Define a rule or condition that will be used for the formatting.

3. Define a style: (optional) the style used by conditional formatting of various cells can
differ. This styles can include for example changes to the font, background, borders.

68

We will use the following workbook and the two styles to differentiate in negative and positive
values.

library(openxlsx2)

wb <- wb_workbook()
wb$add_dxfs_style(name = "negStyle", font_color = wb_color(hex = "FF9C0006"),

bg_fill = wb_color(hex = "FFFFC7CE"))
wb$add_dxfs_style(name = "posStyle", font_color = wb_color(hex = "FF006100"),

bg_fill = wb_color(hex = "FFC6EFCE"))

7.1.1 Rule applies to all each cell in range

wb$add_worksheet("cellIs")
wb$add_data("cellIs", -5:5)
wb$add_data("cellIs", LETTERS[1:11], start_col = 2)
wb$add_conditional_formatting(
"cellIs",
dims = "A1:A11",
rule = "!=0",
style = "negStyle"

)
wb$add_conditional_formatting(
"cellIs",
dims = "A1:A11",
rule = "==0",

69

style = "posStyle"
)

7.1.2 Highlight row dependent on first cell in row

wb$add_worksheet("Moving Row")
wb$add_data("Moving Row", -5:5)
wb$add_data("Moving Row", LETTERS[1:11], start_col = 2)
wb$add_conditional_formatting(
"Moving Row",
dims = "A1:B11",
rule = "$A1<0",
style = "negStyle"

)
wb$add_conditional_formatting(
"Moving Row",
dims = "A1:B11",
rule = "$A1>0",
style = "posStyle"

)

70

7.1.3 Highlight column dependent on first cell in column

wb$add_worksheet("Moving Col")
wb$add_data("Moving Col", -5:5)
wb$add_data("Moving Col", LETTERS[1:11], start_col = 2)
wb$add_conditional_formatting(
"Moving Col",
dims = "A1:B11",
rule = "A$1<0",
style = "negStyle"

)
wb$add_conditional_formatting(
"Moving Col",
dims = "A1:B11",
rule = "A$1>0",
style = "posStyle"

)

71

7.1.4 Highlight entire range cols X rows dependent only on cell A1

wb$add_worksheet("Dependent on")
wb$add_data("Dependent on", -5:5)
wb$add_data("Dependent on", LETTERS[1:11], start_col = 2)
wb$add_conditional_formatting(
"Dependent on",
dims = "A1:B11",
rule = "A1 < 0",
style = "negStyle"

)
wb$add_conditional_formatting(

72

"Dependent on",
dims = "A1:B11",
rule = "A1>0",
style = "posStyle"

)

7.1.5 Highlight cells in column 1 based on value in column 2

wb$add_data("Dependent on", data.frame(x = 1:10, y = runif(10)), startRow = 15)
wb$add_conditional_formatting(
"Dependent on",
dims = "A16:A25",
rule = "B16<0.5",
style = "negStyle"

)
wb$add_conditional_formatting(
"Dependent on",
dims = "A16:A25",
rule = "B16>=0.5",
style = "posStyle"

)

7.1.6 Highlight duplicates using default style

73

wb$add_worksheet("Duplicates")
wb$add_data("Duplicates", sample(LETTERS[1:15], size = 10, replace = TRUE))
wb$add_conditional_formatting(
"Duplicates",
dims = "A1:A10",
type = "duplicatedValues"

)

7.1.7 Cells containing text

fn <- function(x) paste(sample(LETTERS, 10), collapse = "-")
wb$add_worksheet("containsText")
wb$add_data("containsText", sapply(1:10, fn))
wb$add_conditional_formatting(
"containsText",
dim = "A1:A10",
type = "containsText",
rule = "A"

)
wb$add_worksheet("notcontainsText")

74

7.1.8 Cells not containing text

fn <- function(x) paste(sample(LETTERS, 10), collapse = "-")
wb$add_data("notcontainsText", x = sapply(1:10, fn))
wb$add_conditional_formatting(
"notcontainsText",
dim = "A1:A10",
type = "notContainsText",
rule = "A"

)

7.1.9 Cells begins with text

fn <- function(x) paste(sample(LETTERS, 10), collapse = "-")
wb$add_worksheet("beginsWith")
wb$add_data("beginsWith", x = sapply(1:100, fn))
wb$add_conditional_formatting(
"beginsWith",
dim = "A1:A100",

75

type = "beginsWith",
rule = "A"

)

7.1.10 Cells ends with text

fn <- function(x) paste(sample(LETTERS, 10), collapse = "-")
wb$add_worksheet("endsWith")
wb$add_data("endsWith", x = sapply(1:100, fn))
wb$add_conditional_formatting(
"endsWith",
dim = "A1:A100",
type = "endsWith",
rule = "A"

)

76

7.1.11 Colorscale colors cells based on cell value

Figure 7.1: Yep, that is a color scale image.

77

fl <- "https://github.com/JanMarvin/openxlsx-data/raw/main/readTest.xlsx"
df <- read_xlsx(fl, sheet = 5)
wb$add_worksheet("colorScale", zoom = 30)
wb$add_data("colorScale", x = df, col_names = FALSE) ### write data.frame

Rule is a vector or colors of length 2 or 3 (any hex color or any of colors()). If rule is NULL,
min and max of cells is used. Rule must be the same length as style or L.

wb$add_conditional_formatting(
"colorScale",
dims = wb_dims(x = df, col_names = FALSE),
style = c("black", "white"),
rule = c(0, 255),
type = "colorScale"

)
wb$set_col_widths("colorScale", cols = seq_along(df), widths = 1.07)
wb$set_row_heights("colorScale", rows = seq_len(nrow(df)), heights = 7.5)

7.1.12 Between

Highlight cells in interval [-2, 2]

wb$add_worksheet("between")
wb$add_data("between", -5:5)
wb$add_conditional_formatting(
"between",

78

dims = "A1:A11",
type = "between",
rule = c(-2, 2)

)
wb$add_worksheet("topN")

7.1.13 Top N

wb$add_data("topN", data.frame(x = 1:10, y = rnorm(10)))

Highlight top 5 values in column x

wb$add_conditional_formatting(
"topN",
dims = "A2:A11",
style = "posStyle",
type = "topN",
params = list(rank = 5)

)

Highlight top 20 percentage in column y

wb$add_conditional_formatting(
"topN",
dims = "B2:B11",

79

style = "posStyle",
type = "topN",
params = list(rank = 20, percent = TRUE)

)
wb$add_worksheet("bottomN")

7.1.14 Bottom N

wb$add_data("bottomN", data.frame(x = 1:10, y = rnorm(10)))

Highlight bottom 5 values in column x

wb$add_conditional_formatting(
"bottomN",
dims = "A2:A11",
style = "negStyle",
type = "bottomN",
params = list(rank = 5)

)

Highlight bottom 20 percentage in column y

wb$add_conditional_formatting(
"bottomN",
dims = "B2:B11",
style = "negStyle",

80

type = "bottomN",
params = list(rank = 20, percent = TRUE)

)
wb$add_worksheet("logical operators")

7.1.15 Logical Operators

You can use Excels logical Operators

wb$add_data("logical operators", 1:10)
wb$add_conditional_formatting(
"logical operators",
dims = "A1:A10",
rule = "OR($A1=1,$A1=3,$A1=5,$A1=7)"

)

7.1.16 (Not) Contains Blanks

81

wb$add_worksheet("contains blanks")
wb$add_data(x = c(NA, 1, 2, ''), col_names = FALSE, na.strings = NULL)
wb$add_data(x = c(NA, 1, 2, ''), col_names = FALSE, na.strings = NULL,

start_col = 2)
wb$add_conditional_formatting(dims = "A1:A4", type = "containsBlanks")
wb$add_conditional_formatting(dims = "B1:B4", type = "notContainsBlanks")

7.1.17 (Not) Contains Errors

wb$add_worksheet("contains errors")
wb$add_data(x = c(1, NaN), colNames = FALSE)
wb$add_data(x = c(1, NaN), colNames = FALSE, start_col = 2)
wb$add_conditional_formatting(dims = "A1:A3", type = "containsErrors")
wb$add_conditional_formatting(dims = "A1:A3", type = "notContainsErrors")

7.1.18 Iconset

wb$add_worksheet("iconset")
wb$add_data(x = c(100, 50, 30), colNames = FALSE)
wb$add_conditional_formatting(
dims = "A1:A6",
rule = c(-67, -33, 0, 33, 67),
type = "iconSet",
params = list(

percent = FALSE,
iconSet = "5Arrows",

82

reverse = TRUE)
)

7.1.19 Unique Values

wb$add_worksheet("unique values")
wb$add_data(x = c(1:4, 1:2), colNames = FALSE)
wb$add_conditional_formatting(dims = "A1:A6", type = "uniqueValues")

7.2 Databars

wb$add_worksheet("databar")
Databars
wb$add_data("databar", -5:5, start_col = 1)
wb <- wb_add_conditional_formatting(
wb,
"databar",
dims = "A1:A11",

83

type = "dataBar"
) ### Default colors

wb$add_data("databar", -5:5, start_col = 3)
wb <- wb_add_conditional_formatting(
wb,
"databar",
dims = "C1:C11",
type = "dataBar",
params = list(

showValue = FALSE,
gradient = FALSE

)
) ### Default colors

wb$add_data("databar", -5:5, start_col = 5)
wb <- wb_add_conditional_formatting(
wb,
"databar",
dims = "E1:E11",
type = "dataBar",
style = c("#a6a6a6"),
params = list(showValue = FALSE)

)

wb$add_data("databar", -5:5, start_col = 7)
wb <- wb_add_conditional_formatting(
wb,
"databar",
dims = "G1:G11",
type = "dataBar",
style = c("red"),
params = list(

showValue = TRUE,
gradient = FALSE

)
)

custom color
wb$add_data("databar", -5:5, start_col = 9)
wb <- wb_add_conditional_formatting(
wb,

84

"databar",
dims = wb_dims(cols = 9, rows = 1:11),
type = "dataBar",
style = c("#a6a6a6", "#a6a6a6"),
params = list(showValue = TRUE, gradient = FALSE)

)

with rule
wb$add_data(x = -5:5, start_col = 11)
wb <- wb_add_conditional_formatting(
wb,
"databar",
dims = wb_dims(cols = 11, rows = 1:11),
type = "dataBar",
rule = c(0, 5),
style = c("#a6a6a6", "#a6a6a6"),
params = list(showValue = TRUE, gradient = FALSE)

)

7.3 Sparklines

sl <- create_sparklines("Sheet 1", "A3:K3", "L3")
wb <- wb_workbook() |>

wb_add_worksheet() |>
wb_add_data(x = mtcars) |>
wb_add_sparklines(sparklines = sl)

85

8 Charts

The following manual will present various ways to add plots and charts to openxlsx2 work-
sheets and even chartsheets. This assumes that you have basic knowledge how to handle
openxlsx2 and are familiar with either the default R graphics functions like plot() or
barplot() and grDevices, or with the packages {ggplot2}, {rvg}, or {mschart}. There
are plenty of other manuals that cover using these packages better than we could ever tell you
to.

library(openxlsx2)

create a workbook
wb <- wb_workbook()

8.1 Adding a chart as an image to a workbook

You can include any image in PNG or JPEG format. Simply open a device and save the output
and pass it to the worksheet with wb_add_image().

myplot <- tempfile(fileext = ".jpg")
jpeg(myplot)
plot(AirPassengers)
invisible(dev.off())

Add basic plots to the workbook
wb$add_worksheet("add_image")$add_image(file = myplot)

86

https://ggplot2-book.org/
https://davidgohel.github.io/rvg/
https://ardata-fr.github.io/officeverse/charts-with-mschart.html

Figure 8.1: The plot output added as image

It is possible to use {ragg} to create the png files to add to the worksheet:

library(ragg)
ragg_file <- tempfile(fileext = ".png")
agg_png(ragg_file, width = 1000, height = 500, res = 144)
plot(x = mtcars$mpg, y = mtcars$disp)
invisible(dev.off())

wb$add_worksheet("add_image2")$add_image(file = ragg_file)

8.2 Adding {ggplot2} plots to a workbook

You can include {ggplot2} plots similar to how you would include them with openxlsx. Call
the plot first and afterwards use wb_add_plot().

library(ggplot2)

ggplot(mtcars, aes(x = mpg, fill = as.factor(gear))) +
ggtitle("Distribution of Gas Mileage") +

87

https://ragg.r-lib.org/

geom_density(alpha = 0.5)

Add ggplot to the workbook
wb$add_worksheet("add_plot")$
add_plot(width = 5, height = 3.5, fileType = "png", units = "in")

Figure 8.2: The ggplot2 output

8.3 Adding plots via {rvg} or {devEMF}

If you want vector graphics that can be modified in spreadsheet software the dml_xlsx()
device comes in handy. You can pass the output via wb_add_drawing().

library(rvg)

create rvg example
tmp <- tempfile(fileext = ".xml")
dml_xlsx(file = tmp, fonts = list(sans = "Bradley Hand"))
ggplot(data = iris,

88

mapping = aes(x = Sepal.Length, y = Petal.Width)) +
geom_point() + labs(title = "With font Bradley Hand") +
theme_minimal(base_family = "sans", base_size = 18)

invisible(dev.off())

Add rvg to the workbook
wb$add_worksheet("add_drawing")$
add_drawing(xml = tmp)$
add_drawing(xml = tmp, dims = NULL)

library(devEMF)

tmp_emf <- tempfile(fileext = ".emf")
devEMF::emf(file = tmp_emf)
ggplot(data = iris,

mapping = aes(x = Sepal.Length, y = Petal.Width)) +
geom_point()

#> Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): devEMF: your
#> system substituted font family 'Nimbus Sans' when you requested 'Helvetica'
#> Warning in grid.Call(C_stringMetric, as.graphicsAnnot(x$label)): devEMF: your
#> system substituted font family 'Nimbus Sans' when you requested 'Helvetica'

89

dev.off()
#> pdf
#> 2

Add rvg to the workbook
wb$add_worksheet("add_emf")$
add_drawing(dims = "A1:D4", xml = tmp)$
add_image(dims = "E1:H4", file = tmp_emf)

8.4 Adding {mschart} plots

If you want native openxml charts, have a look at {mschart}. Create one of the chart files
and pass it to the workbook with wb_add_mschart().

There are two options possible.

1. Either the default {mschart} output identical to the one in {officer}. Passing a data
object and let {mschart} prepare the data. In this case wb_add_mschart() will add a
new data region.

2. Passing a wb_data() object to {mschart}. This object contains references to the data
on the worksheet and allows using data “as is”.

8.4.1 Add chart and data

library(mschart)

create chart from mschart object (this creates new input data)
mylc <- ms_linechart(
data = browser_ts,
x = "date",
y = "freq",
group = "browser"

)

wb$add_worksheet("add_mschart")$add_mschart(dims = "A10:G25", graph = mylc)

90

Figure 8.3: An mschart graph

8.4.2 Add chart using wb_data()

These are native spreadsheet charts that are dynamic in terms of the data visible on the sheet.
It is therefore possible to hide columns or rows of the data, e.g. with groups, so that the chart
shows more data when a group is expanded.

create chart referencing worksheet cells as input
write data starting at B2
wb$add_worksheet("add_mschart - wb_data")$

91

add_data(x = mtcars, dims = "B2")$
add_data(x = data.frame(name = rownames(mtcars)), dims = "A2")

create wb_data object this will tell this mschart
from this PR to create a file corresponding to openxlsx2
dat <- wb_data(wb, dims = "A2:G10")

create a few mscharts
scatter_plot <- ms_scatterchart(
data = dat,
x = "mpg",
y = c("disp", "hp")

)

bar_plot <- ms_barchart(
data = dat,
x = "name",
y = c("disp", "hp")

)

area_plot <- ms_areachart(
data = dat,
x = "name",
y = c("disp", "hp")

)

line_plot <- ms_linechart(
data = dat,
x = "name",
y = c("disp", "hp"),
labels = c("disp", "hp")

)

add the charts to the data
wb <- wb |>
wb_add_mschart(dims = "F4:L20", graph = scatter_plot) |>
wb_add_mschart(dims = "F21:L37", graph = bar_plot) |>
wb_add_mschart(dims = "M4:S20", graph = area_plot) |>
wb_add_mschart(dims = "M21:S37", graph = line_plot)

92

Figure 8.4: Multiple mschart graphs in a single spreadsheet

8.4.3 Add and fill a chartsheet

Finally it is possible to add mschart charts on a so called chartsheet. These are special sheets
that contain only a chart object, referencing data from another sheet.

add chartsheet
wb <- wb |>
wb_add_chartsheet() |>
wb_add_mschart(graph = scatter_plot)

93

Figure 8.5: A mschart graph on a chartsheet

94

9 Spreadsheet formulas

Below you find various examples how to create formulas with openxlsx2. Though, before
we start with the examples, let us begin with a word of warning. Please be aware, while
it is possible to create all these formulas, they are not evaluated unless they are opened in
spreadsheet software. Even worse, if there are cells containing the result of some formula, it
can not be trusted unless the formula is evaluated in spreadsheet software.

This can be shown in a simple example: We have a spreadsheet with a formula A1 + B1. This
formula was evaluated with spreadsheet software as A1 + B1 = 2. Therefore if we read the
cell, we see the value 2. Lets recreate this output in openxlsx2

library(openxlsx2)

Create artificial xlsx file
wb <- wb_workbook()$add_worksheet()$add_data(x = t(c(1, 1)), col_names = FALSE)$
add_formula(dims = "C1", x = "A1 + B1")

Users should never modify cc as shown here
wb$worksheets[[1]]$sheet_dataccv[3] <- 2

we expect a value of 2
wb_to_df(wb, col_names = FALSE)
#> A B C
#> 1 1 1 2

Now, lets assume we modify the data in cell A1.

wb$add_data(x = 2)

we expect 3
wb_to_df(wb, col_names = FALSE)
#> A B C
#> 1 2 1 2

What happened? Even though we see cells A1 and B1 show a value of 2 and 1 our formula in
C1 was not updated. It still shows a value of 2. This is because openxlsx2 does not evaluate
formulas and workbooks on a more general scale. In the open xml style the cell looks something
like this:

95

<c r="C1">
<f>A1 + B1</f>
<v>2</v>

</c>

And when we read from this cell, we always return the value of v. In this case it is obvious,
but still wrong and it is a good idea to check if underlying fields contain formulas.

wb_to_df(wb, col_names = FALSE, show_formula = TRUE)
#> A B C
#> 1 2 1 A1 + B1

If openxlsx2 writes formulas, as shown in the examples below, the fields will be entirely blank.
These fields will only be evaluated and filled, once the output file is opened in spreadsheet
software.

The only way to avoid surprises is to be aware of this all the time and similar, checking for
similar things all the time.

9.1 Simple formulas

Generally speaking it is possible to use all valid formulas allowed in spreadsheet software. This
can be functions, arithmetic operators or a mix of both. It’s possible to create functions for all
by spreadsheet software supported functions, including custom vml ones (though this requires
a workbook that was loaded with the required macros).

wb <- wb_workbook()$add_worksheet()$
add_data(x = head(cars))$
add_formula(x = "SUM(A2, B2)", dims = "D2")$
add_formula(x = "A2 + B2", dims = "D3")

9.2 Array formulas

Array formulas in openxml spreadsheets allow performing multiple calculations on a data vector
or ‘array’ instead of a single cell. An array is similar to a vector in R. Unlike regular formulas
that operate on a single value, array formulas can process multiple values simultaneously. An
important distinction is that that you need array formulas, whenever the formula evaluates an
array, even if the output creates only a single cell. So something like this SUM(ABS(A2:A11))

96

would require an array formula, because the SUM() function is called on a function that re-
turns an array ABS(A2:A11). If the previous formula in written as basic formula, spreadsheet
software is likely to mess it up and tries to insert @ characters in the formula.

wb <- wb_workbook()$add_worksheet()$
add_data(x = head(cars))$
add_formula(x = "A2:A7 * B2:B7", dims = "C2:C7", array = TRUE)

9.3 Array formulas creating multiple fields

In the example below we want to use MMULT() which creates a matrix multiplication. This
requires us to write an array formula and to specify the region where the output will be written
to.

m1 <- matrix(1:6, ncol = 2)
m2 <- matrix(7:12, nrow = 2)

wb <- wb_workbook()$add_worksheet()$
add_data(x = m1, startCol = 1)$
add_data(x = m2, startCol = 4)$
add_formula(x = "MMULT(A2:B4, D2:F3)", dims = "H2:J4", array = TRUE)

wb$open()

Similar a the coefficients of a linear regression

we expect to find this in D1:E1
coef(lm(head(cars)))
#> (Intercept) dist
#> 5.2692308 0.1153846
wb <- wb_workbook()$add_worksheet()$
add_data(x = head(cars))$
add_formula(x = "LINEST(A2:A7, B2:B7, TRUE)", dims = "D2:E2", array = TRUE)

wb$open()

9.4 Modern spreadsheet functions

Spreadsheet functions are constantly evolving and similarly extended. Several formulas intro-
duced in the MS365 Excel versions require _xlfn. as prefix for the function name. Such
formulas will only be evaluated with compatible spreadsheet software. In case of doubt, see

97

Excel functions (alphabetical) for a list of all functions and an indicator for the software version
in which they were introduced.

wb <- wb_workbook()$add_worksheet()$
add_data(x = cars)$
add_data(dims = "D1", x = "Unique Values of Speed")$
add_formula(

dims = wb_dims(x = unique(cars$speed), from_col = "D", from_row = 2),
x = paste0("_xlfn.UNIQUE(", wb_dims(x = cars, cols = "speed"), ")"),
cm = TRUE

)

For lambda functions you might need additional parameter prefixes: _xlpm.. Below the code
for =MAKEARRAY(3,3,LAMBDA(r,c,r*c)).

wb$add_formula(
dims = "G2",
x = "_xlfn.MAKEARRAY(3,3,_xlfn.LAMBDA(_xlpm.r,_xlpm.c,_xlpm.r*_xlpm.c))",
cm = TRUE

)

9.5 Shared formulas

A neat feature in spreadsheet software is that you can drag cells around to fill cells with content
of other cells. Whenever you are dragging a cell containing a formula, this formula will be
extended onto other cell regions. This is called a shared formula. In openxlsx2 you can use
shared formulas starting with release 1.9.

df <- data.frame(
x = 1:5,
y = 1:5 * 2

)

wb <- wb_workbook()$add_worksheet()$add_data(x = df)$
add_formula(x = "=A2/B2", dims = "C2:C6", shared = TRUE)$
add_formula(x = "=A$2/B$2", dims = "D2:D6", shared = TRUE)

wb_to_df(wb, show_formula = TRUE)
#> x y <NA> <NA>
#> 2 1 2 =A2/B2 =A$2/B$2
#> 3 2 4 =A3/B3 =A$2/B$2

98

https://support.microsoft.com/en-us/office/excel-functions-alphabetical-b3944572-255d-4efb-bb96-c6d90033e188

#> 4 3 6 =A4/B4 =A$2/B$2
#> 5 4 8 =A5/B5 =A$2/B$2
#> 6 5 10 =A6/B6 =A$2/B$2

9.6 Cell error handling

Spreadsheet users will be familiar with various errors thrown once formulas are used. These are
not always useful in spreadsheet software and can be removed using wb_add_ignore_error().
This function allows to fine tune the errors that are returned per cell.

wb <- wb_workbook()$add_worksheet()$
add_data(dims = "B1", x = t(c(1, 2, 3)), colNames = FALSE)$
add_formula(dims = "A1", x = "SUM(B1:C1)")$
add_ignore_error(dims = "A1", formulaRange = TRUE)

9.7 cells metadata (cm) formulas

Similar to array formulas, these cell metadata (cm) formulas hide to the user that they are
array formulas. Using these is implemented in openxlsx2 > 0.6.1:

wb <- wb_workbook()$add_worksheet()$
add_data(x = head(cars))$
add_formula(x = 'SUM(ABS(A2:A7))', dims = "D2", cm = TRUE)

#> Warning in write_data2(wb = wb, sheet = sheet, data = x, name = name, colNames
#> = colNames, : modifications with cm formulas are experimental. use at own risk
wb$open()

9.8 dataTable formulas1

A B C
1 sales_price COGS sales_quantity
2 20 5 1
3 30 11 2
4 40 13 3

1this example was originally provided by @zykezero for openxlsx.

99

Given a basic table like the above, a similarly basic formula for total_sales would be = A2
* C2 with the row value changing at each row.

An implementation for this formula using wb_add_formula() would look this (taken
from current documentation) lets say we’ve read in the data and assigned it to the table
company_sales

creating example data
company_sales <- data.frame(

sales_price = c(20, 30, 40),
COGS = c(5, 11, 13),
sales_quantity = c(1, 2, 3)

)

write in the formula
company_sales$total_sales <- paste(paste0("A", 1:3 + 1L),

paste0("C", 1:3 + 1L), sep = " * ")
add the formula class
class(company_sales$total_sales) <- c(class(company_sales$total_sales),

"formula")

write a workbook
wb <- wb_workbook()$
add_worksheet("Total Sales")$
add_data_table(x = company_sales)

Then we create the workbook, worksheet, and use wb_add_data_table().

One of the advantages of the open xml dataTable syntax is that we don’t have to spec-
ify row numbers or columns as letters. The table also grows dynamically, adding new rows
as new data is appended and extending formulas to the new rows. These dataTable have
named columns that we can use instead of letters. When writing the formulas within the
dataTable we would use the following syntax [@[column_name]] to reference the current
row. So the total_sales formula written in open xml in dataTable would look like this;
=[@[sales_price]] * [@[sales_quantity]]

If we are writing the formula outside of the dataTable we have to reference the table name.
In this case lets say the table name is ‘daily_sales’ =daily_sales[@[sales_price]] *
daily_sales[@[sales_quantity]]

However, if we were to pass this as the text for the formula to be written it would cause an
error because the syntax that open xml requires for selecting the current row is different.

In openxml the dataTable formula looks like this:

100

<calculatedColumnFormula>
daily_sales[[#This Row],[sales_price]]*daily_sales[[#ThisRow],[sales_quantity]]

</calculatedColumnFormula>

Now we can see that open xml replaces [@[sales_price]] with daily_sales[[#This
Row],[sales_price]] We must then use this syntax when writing formulas for dataTable

Because we want the `dataTable` formula to propagate down the entire column
of the data we can assign the formula by itself to any column and allow that
single string to be repeated for each row.

creating example data
example_data <-
data.frame(

sales_price = c(20, 30, 40),
COGS = c(5, 11, 13),
sales_quantity = c(1, 2, 3)

)

base R method
example_data$gross_profit <- "daily_sales[[#This Row],[sales_price]] -
daily_sales[[#This Row],[COGS]]"
example_data$total_COGS <- "daily_sales[[#This Row],[COGS]] *
daily_sales[[#This Row],[sales_quantity]]"
example_data$total_sales <- "daily_sales[[#This Row],[sales_price]] *
daily_sales[[#This Row],[sales_quantity]]"
example_data$total_gross_profit <- "daily_sales[[#This Row],[total_sales]] -
daily_sales[[#This Row],[total_COGS]]"
class(example_data$gross_profit) <- c(class(example_data$gross_profit),

"formula")
class(example_data$total_COGS) <- c(class(example_data$total_COGS),

"formula")
class(example_data$total_sales) <- c(class(example_data$total_sales),

"formula")
class(example_data$total_gross_profit) <- c(
class(example_data$total_gross_profit), "formula")

wb$
add_worksheet("Daily Sales")$
add_data_table(

x = example_data,
table_style = "TableStyleMedium2",

101

table_name = "daily_sales"
)

And if we open the workbook to view the table we created we can see that the formula has
worked.

A B C D E F G
1 sales_price COGS sales_quantitygross_profittotal_COGStotal_sales total_gross_profit
2 20 5 1 15 5 20 15
3 30 11 2 19 22 60 38
4 40 13 3 27 39 120 81

We can also see that it has replaced [#This Row] with @.

A B C D E F G
1 sales_price COGS sales_quantitygross_profittotal_COGStotal_sales total_gross_profit
2 20 5 1 =[@sales_price]

-
[@COGS]

=[@COGS]
*
[@sales_quantity]

=[@sales_price]
*
[@sales_quantity]

=[@[total_sales]]
- [@[to-
tal_COGS]]

3 30 11 2 =[@sales_price]
-
[@COGS]

=[@COGS]
*
[@sales_quantity]

=[@sales_price]
*
[@sales_quantity]

=[@[total_sales]]
- [@[to-
tal_COGS]]

4 40 13 3 =[@sales_price]
-
[@COGS]

=[@COGS]
*
[@sales_quantity]

=[@sales_price]
*
[@sales_quantity]

=[@[total_sales]]
- [@[to-
tal_COGS]]

For completion, the formula as we wrote it appears as;

D E F G
gross_profit total_COGS total_sales total_gross_profit
=gross_profit[[#This
Row],[sales_price]] -
gross_profit[[#This
Row],[COGS]]

=gross_profit[[#This
Row],[COGS]]
* gross_profit[[#This
Row],[sales_quantity]]

=gross_profit[[#This
Row],[sales_price]] *
gross_profit[[#This
Row],[sales_quantity]]

=gross_profit[[#This
Row],[total_sales]] -
gross_profit[[#This
Row],[total_COGS]]

=gross_profit[[#This
Row],[sales_price]] -
gross_profit[[#This
Row],[COGS]]

=gross_profit[[#This
Row],[COGS]]
* gross_profit[[#This
Row],[sales_quantity]]

=gross_profit[[#This
Row],[sales_price]] *
gross_profit[[#This
Row],[sales_quantity]]

=gross_profit[[#This
Row],[total_sales]] -
gross_profit[[#This
Row],[total_COGS]]

102

D E F G
=gross_profit[[#This
Row],[sales_price]] -
gross_profit[[#This
Row],[COGS]]

=gross_profit[[#This
Row],[COGS]]
* gross_profit[[#This
Row],[sales_quantity]]

=gross_profit[[#This
Row],[sales_price]] *
gross_profit[[#This
Row],[sales_quantity]]

=gross_profit[[#This
Row],[total_sales]] -
gross_profit[[#This
Row],[total_COGS]]

sum dataTable examples
wb$add_worksheet("sum_examples")

Note: dataTable formula do not need to be used inside of dataTables.
dataTable formula are for referencing the data within the dataTable.
sum_examples <- data.frame(
description = c("sum_sales_price", "sum_product_Price_Quantity"),
formula = c("", "")

)

wb$add_data(x = sum_examples)

add formulas
wb$add_formula(x = "sum(daily_sales[[#Data],[sales_price]])", dims = "B2")
wb$add_formula(x = "sum(daily_sales[[#Data],[sales_price]] *

daily_sales[[#Data],[sales_quantity]])", dims = "B3",
array = TRUE)

dataTable referencing
wb$add_worksheet("dt_references")

Adding the headers by themselves.
wb$add_formula(
x = "daily_sales[[#Headers],[sales_price]:[total_gross_profit]]",
dims = "A1:G1",
array = TRUE

)

Adding the raw data by reference and selecting them directly.
wb$add_formula(
x = "daily_sales[[#Data],[sales_price]:[total_gross_profit]]",
start_row = 2,
dims = "A2:G4",
array = TRUE

)

103

wb$open()

104

10 Pivot tables

Pivot tables are a feature of spreadsheet software dating back to Lotus Improv. They allow
creating interactive tables to aggregate data that still allows the user to modify the table, by
changing the aggregation function or variables. Pivot tables are frequently used in reports to
create something like a dashboard.

Even though they are a long requested feature, it took a while until support was added to
openxlsx2. Since release 0.5 users are able to use wb_add_pivot_table() and since then
support was further improved and now it is also possible to add slicers to pivot tables. Slicers
further increase the dashboard character of pivot tables, as they provide a button interface to
filter the pivot table.

The state of pivot tables is now that they work quite well, though they bring a few features
users should be aware of. Most importantly, our function only provides the spreadsheet with
an instruction set how to create the pivot table, while the actual sheet where the table is
supposed to appear remains empty until it is evaluated by the spreadsheet software. This is
similar to our approach with formulas.

Please, though, be a little careful if you start experimenting with pivot table params as there
are actual cases, where the instruction set results into spreadsheet software crashes. Make
copies and try to prevent some headaches afterwards. Also it is a good idea to check the
expected outcome of a pivot table. We will make use of the {pivottabler} package for this
in this chapter, but there are obviously other ways in base R, or the many data wrangling
packages like {data.table}, {dplyr} or {polars}.

10.1 Adding pivot tables

library(openxlsx2)

wb <- wb_workbook()$
add_worksheet()$
add_data(x = esoph)

df <- wb_data(wb)

105

wb$add_pivot_table(df, rows = "agegp", cols = "tobgp", data = c("ncontrols"))

for visual comparison
pt <- pivottabler::PivotTable$new()
pt$addData(esoph)
pt$addColumnDataGroups("tobgp")
pt$addRowDataGroups("agegp")
pt$defineCalculation(calculationName = "ncontrols",

summariseExpression = "sum(ncontrols)")
pt$evaluatePivot()
pt
#> 0-9g/day 10-19 20-29 30+ Total
#> 25-34 70 18 11 16 115
#> 35-44 107 42 24 17 190
#> 45-54 90 44 25 8 167
#> 55-64 92 42 26 6 166
#> 65-74 68 26 10 2 106
#> 75+ 20 6 3 2 31
#> Total 447 178 99 51 775

wb$add_data_table(dims = "A14", x = pt$asDataFrame(), row_names = TRUE)

if (interactive()) wb$open()

106

Unlike pivottabler the pivot tables in openxlsx2 are not evaluated. Therefore there is
nothing in the sheet region A3:F11 and if you write something here, spreadsheet software will
complain.1

10.1.1 Filter, row, column, and data

Similar to pivot tables in Excel, it is possible to assign variables to the table dimensions filter,
row, column, and data. It is not required to have all dimensions filled. You can assign each
variable only once per dimension, but can combine multiple variables.

wb <- wb_workbook()$
add_worksheet()$
add_data(x = esoph)

1It should be possible to integrate results similar to pivottabler into wb_add_pivot_table() so that you
should be able to have evaluated pivot tables straight ahead. Pull requests are welcome.

107

df <- wb_data(wb)

wb$add_pivot_table(df, dims = "A3", rows = "agegp", cols = "tobgp",
data = c("ncontrols"))

wb$add_pivot_table(df, dims = "A13", rows = "agegp",
data = c("ncontrols", "ncases"))

wb$add_pivot_table(df, dims = "A18", rows = "agegp", cols = "tobgp",
data = c("ncontrols", "ncases"))

10.1.2 Sorting

Using sort_item it is possible to order the pivot table. sort_item can take either integers
or characters, the latter is beneficial in cases as below, where the variable you want to sort
is a factor. Though, be aware that pivot table uses a different approach to distinct unique
elements and that Berlin and BERLIN are identical to it. You can check for distinct cases with
openxlsx2:::distinct().

tbl_prueba_2 <- data.frame(
var_1 = as.Date(rep(

c(
"2023-02-01", "2023-03-01", "2023-04-01", "2023-05-01", "2023-06-01",
"2023-07-01", "2023-08-01", "2023-09-01", "2023-10-01", "2023-11-01",
"2023-12-01", "2024-01-01", "2024-02-01", "2024-03-01"

108

),
each = 2L

)),
var_2 = rep(2:15, each = 2L),
year = rep(c(2023, 2024), c(22L, 6L)),
month = ordered(

rep(
c(
"Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov",
"Dec", "Jan", "Feb", "Mar"

),
each = 2L

),
levels = c("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep",

"Oct", "Nov", "Dec")
)

)

wb_1 <- wb_workbook() |>
wb_add_worksheet() |>
wb_add_data(x = tbl_prueba_2)

df <- wb_data(wb_1)

wb_1 <- wb_1 |>
wb_add_pivot_table(

x = df,
cols = c("year", "month"),
data = "var_2",
fun = "sum",
params = list(
sort_item = list(month = rev(levels(tbl_prueba_2$month)))

)
)

if (interactive()) wb_1$open()

109

10.1.3 Aggregation functions

The default aggregation function is SUM, but others are possible as well: AVERAGE, COUNT,
COUNTA, MAX, MIN, PRODUCT, STDEV, STDEVP, SUM, VAR, VARP. This is limited to func-
tions available in the openxml specification. Each data variable can use a different function.

wb <- wb_workbook()$
add_worksheet()$
add_data(x = mtcars)

df <- wb_data(wb)

wb$add_pivot_table(df, dims = "A1", rows = "cyl", cols = "gear",
data = c("disp", "hp"))

wb$add_pivot_table(df, dims = "A10", sheet = 2, rows = "cyl", cols = "gear",
data = c("disp", "hp"), fun = "count")

wb$add_pivot_table(df, dims = "A20", sheet = 2, rows = "cyl", cols = "gear",
data = c("disp", "hp"), fun = "average")

wb$add_pivot_table(df, dims = "A30", sheet = 2, rows = "cyl", cols = "gear",
data = c("disp", "hp"), fun = c("sum", "average"))

110

10.1.4 Styling pivot tables

There is no real support for individual pivot table styles. Aside from the default style, it is
possible to disable the style and to apply auto format styles (for various styles see annex G.3
- Built-in PivotTable AutoFormats of ECMA-376-1 (2016)). In the example below style
id 4099 is applied, ids range from 4096 to 4117.

wb <- wb_workbook() |>
wb_add_worksheet("table") |>

111

wb_add_worksheet("data") |>
wb_add_data(x = mtcars)

df <- wb_data(wb)

wb <- wb |>

pivot table without style
wb_add_pivot_table(

df, dims = "A3", sheet = "table",
rows = c("cyl", "am"), cols = "gear", data = "disp",
fun = "average",
params = list(no_style = TRUE, numfmt = c(formatCode = "##0.0"))

) |>

Applied a few params and use auto_format_id
wb_add_pivot_table(

df, dims = "G3", sheet = "table",
rows = c("cyl", "am"), cols = "vs", data = "disp",
fun = "average",
params = list(
apply_alignment_formats = TRUE,
apply_number_formats = TRUE,
apply_border_formats = TRUE,
apply_font_formats = TRUE,
apply_pattern_formats = TRUE,
apply_width_height_formats = TRUE,
auto_format_id = 4099,
numfmt = c(formatCode = "##0.0")

)
)

if (interactive()) wb$open()

112

With params it is possible to tweak many pivot table arguments such as params =
list(col_header_caption = "test caption"). This way it is also possible to apply built
in pivot table styles. The default is PivotStyleLight16 (for more built in styles see G.1
Built-in Table Styles of ECMA-376-1 (2016)).

wb <- wb_workbook()$
add_worksheet("table")$
add_worksheet("data")$add_data(x = mtcars)

df <- wb_data(wb)

wb$add_pivot_table(df, sheet = "table", dims = "A1", rows = "cyl",
cols = "gear", data = "disp", params = list(
table_style = "TableStyleMedium23"))

wb$add_pivot_table(df, sheet = "table", dims = "A10", rows = "cyl",
cols = "gear", data = "disp", params = list(
table_style = "TableStyleLight19"))

wb$add_pivot_table(df, sheet = "table", dims = "A19", rows = "cyl",
cols = "gear", data = "disp", params = list(
table_style = "TableStyleDark11"))

wb$add_pivot_table(df, sheet = "table", dims = "G1", rows = "cyl",
cols = "gear", data = "disp", params = list(
table_style = "PivotStyleMedium28"))

wb$add_pivot_table(df, sheet = "table", dims = "G10", rows = "cyl",
cols = "gear", data = "disp", params = list(
table_style = "PivotStyleMedium13"))

wb$add_pivot_table(df, sheet = "table", dims = "G19", rows = "cyl",
cols = "gear", data = "disp", params = list(
table_style = "PivotStyleDark20"))

113

if (interactive()) wb$open()

10.1.5 Pivot table dims

It is possible to use dims without end row. This way the entire column is used as input. This
obviously is slower than using a fixed range, because the wb_data() object will contain each
possible row. This is

original pivot table as reference
pt <- pivottabler::PivotTable$new()
pt$addData(pivottabler::bhmtrains)
pt$addColumnDataGroups("TrainCategory")
pt$addRowDataGroups("TOC",

outlineBefore = list(isEmpty = FALSE,
groupStyleDeclarations = list(
color = "blue")),

outlineTotal = list(isEmpty = FALSE,
groupStyleDeclarations = list(

color = "blue")))
pt$addRowDataGroups("PowerType", addTotal = FALSE)
pt$defineCalculation(calculationName = "TotalTrains",

summariseExpression = "n()")

114

use A:P
wb <- wb_workbook()$add_worksheet()$add_data(x = pivottabler::bhmtrains,

na.strings = NULL)
df <- wb_data(wb, dims = "A:P")

use TrainCategory on column and data
wb$add_pivot_table(
df,
rows = c("TOC", "PowerType"),
cols = "TrainCategory",
data = "TrainCategory",
fun = "count"

)

if (interactive()) wb$open()

115

10.1.6 Using number formats

Pivot table example 1
wb <- wb_workbook() |>
wb_add_worksheet() |>
wb_add_data(x = mtcars, inline_strings = FALSE)

wb$add_numfmt(dims = wb_dims(x = mtcars, cols = "disp"), numfmt = "$ #,###")

df <- wb_data(wb)

basic pivot table with filter, rows, cols and data
wb$add_pivot_table(
df,
rows = "cyl", cols = "gear",
data = c("disp", "hp"),
fun = c("sum", "count"),

116

params = list(
numfmt = c(formatCode = "$ ###", formatCode = "#")

))

10.2 Adding slicers to pivot tables

Since openxlsx2 release 1.1 it is possible to add slicers to pivot tables created with
wb_add_pivot_tables(). For this to work you have to provide a name for a pivot table name
you are going to add and make sure that the slicer variable is actually ‘activated’ in the pivot
table. Adding slicers to loaded pivot tables is not possible and the creation of slicers needs to
go hand in hand with a pivot table.

It is possible to apply slicer styles with params = list(style = "SlicerStyleLight2")

wb <- wb_workbook() |>
wb_add_worksheet() |>
wb_add_data(x = mtcars)

df <- wb_data(wb, sheet = 1)

wb$
add_pivot_table(

df, dims = "A3", slicer = "vs", rows = "cyl", cols = "gear", data = "disp",
pivot_table = "mtcars"

)$
add_slicer(x = df, dims = "B7:D9", slicer = "vs", pivot_table = "mtcars",

params = list(edit_as = "twoCell", style = "SlicerStyleLight2"))

if (interactive()) wb$open()

It is possible to tweak the number of columns in a slicer using columnCount and to add a
caption and change the sorting order to descending.

wb <- wb_workbook() |>
Sheet 1
wb_add_worksheet() |>
wb_add_data(x = mtcars)

df <- wb_data(wb, sheet = 1)

117

varname <- c("vs", "drat")

Sheet 2
wb$
first pivot
add_pivot_table(

df, dims = "A3", slicer = varname, rows = "cyl", cols = "gear",
data = "disp", pivot_table = "mtcars"

)$
add_slicer(x = df, sheet = current_sheet(), slicer = "vs",

pivot_table = "mtcars")$
add_slicer(x = df, dims = "B18:D24", sheet = current_sheet(), slicer = "drat",

pivot_table = "mtcars", params = list(columnCount = 5))$
second pivot
add_pivot_table(

df, dims = "G3", sheet = current_sheet(), slicer = varname, rows = "gear",
cols = "carb", data = "mpg", pivot_table = "mtcars2"

)$
add_slicer(x = df, dims = "G12:I16", slicer = "vs", pivot_table = "mtcars2",

params = list(sortOrder = "descending", caption = "Wow!"))

Sheet 3
wb$
add_pivot_table(

df, dims = "A3", slicer = varname, rows = "gear", cols = "carb",
data = "mpg", pivot_table = "mtcars3"

)$
add_slicer(x = df, dims = "A12:D16", slicer = "vs", pivot_table = "mtcars3")

if (interactive()) wb$open()

10.3 Choosing variable filters

Using the choose param argument it is possible to select subsets of the data. The code looks
like this: choose = c(agegp = 'x > "25-34"'). The variable name as seen in the wb_data()
object, x is mandatory and some expression that R understands. This can be something like
%in%, ==, <, >, or !=.

wb <- wb_workbook() |>
wb_add_worksheet("table") |>

118

wb_add_worksheet("data") |>
wb_add_data(x = datasets::esoph)

df <- wb_data(wb)

add a pivot table and a slicer and preselect
a few cases and style it a bit
wb <- wb |>
wb_add_pivot_table(

df, dims = "A3", sheet = "table",
rows = "agegp", cols = "tobgp", data = "ncases",
slicer = "alcgp", pivot_table = "pt1",
param = list(
show_data_as = c("percentOfRow"),
numfmt = c(formatCode = "0.0%"),
compact = FALSE, outline = FALSE, compact_data = FALSE,
row_grand_totals = FALSE, col_grand_totals = FALSE,
choose = c(agegp = 'x > "25-34"')

)
) |>
wb_add_slicer(

x = df, dims = "B14:D18",
slicer = "alcgp", pivot_table = "pt1",
param = list(
columnCount = 2,
choose = c(alcgp = 'x %in% c("40-79", "80-119")')

)
)

if (interactive()) wb$open()

119

10.4 Final remarks

As of now it is not possible to add charts to pivot tables. This would require pivot table
evaluation to construct the wb_data() object to use for and access to the area where the pivot
table is stored on the sheet.

It is always a good idea to check that the constructed pivot table and the expected pivot table
match. Either construct the pivot table manually or as shown here via {pivottabler} or
maybe with either {data.table} or {dplyr}. It is a little tricky for openxlsx2 to check if
the pivot table works, when we have no real way to validate that it does.

120

11 Data Validation

Contrary to R objects like vectors or data frames, spreadsheets can contain various types of
data in any type of order. A string followed by a date and a formula is not uncommon in
spreadsheets. Thankfully even spreadsheets provide a tool to validate some input. This is
called data validation. A tool that enhances data integrity and accuracy. By setting specific
criteria and constraints for data entry, users can ensure that the data entered into cells meets
predefined standards and rules. These rules apply to cells that expect data entry as well as
cells that already contain data. Using data validation can help to prevent errors, maintain
consistency, and streamline data even in a flexible environment such as a spreadsheet. Key
aspects of data validation include creating drop-down lists for easy selection, applying date and
number constraints to ensure appropriate data ranges, and using custom formulas to enforce
complex validation rules. Understanding and implementing data validation can protect the
user from otherwise hard to spot mistakes.

We begin with a small dataset that we want to test with data validation.

df <- data.frame(
"d" = as.Date("2016-01-01") + -5:5,
"t" = as.POSIXct("2016-01-01") + -5:5 * 10000

)

11.1 Checking numeric ranges and text lengths

In the next two code snippets we are going to check for a specific type of data, if a condition
defined by operator is met for a selection or range of values. We construct a workbook that
will be filled with four sheets of data tables and data validation for the workbook.

library(openxlsx2)

wb <- wb_workbook()$
add_worksheet("Sheet 1")$
add_data_table(x = iris)$
whole numbers are fine
add_data_validation(dims = "A2:C151", type = "whole",

121

operator = "between", value = c(1, 9)
)$
text width 7-9 is fine
add_data_validation(dims = "E2:E151", type = "textLength",

operator = "between", value = c(7, 9)
)

In the screenshot below, the green flag in the top left corner indicates a warning thrown by
the data validation rule implemented.

11.2 Date and Time cell validation

In the code below we use a new data operator greaterThanOrEqual, all operators can be found
in the documentation for wb_add_data_validation(). Here we add checks for a specific date
and a range of timestamps that are allowed.

wb$
add_worksheet("Sheet 2")$
add_data_table(x = df)$
date >= 2016-01-01 is fine
add_data_validation(dims = "A2:A12", type = "date",

operator = "greaterThanOrEqual",
value = as.Date("2016-01-01")

)$
a few timestamps are fine

122

add_data_validation(dims = "B2:B12", type = "time",
operator = "between", value = df$t[c(4, 8)]

)

There are many warnings in here too.

11.3 validate list: validate inputs on one sheet with another

In the code below we create a sample list from the iris dataset on Sheet 4 and reference
this a list options for column A on Sheet 3. Our references do not have to be from the
same dataset, it can be anything else. This helps, if you do not want to store the values in
the wb_add_data_validation() step and or want to be able to quickly adjust the possible
values.

wb$
add_worksheet("Sheet 3")$
add_data_table(x = iris[1:30,])$
add_worksheet("Sheet 4")$
add_data(x = sample(iris$Sepal.Length, 10))$
add_data_validation("Sheet 3", dims = "A2:A31", type = "list",

value = "'Sheet 4'!A1:A10")

Below is the drop down list and the input used to populate it.

123

124

11.4 validate list: validate inputs with values

In the code below we create drop down lists for values directly passed to wb_add_data_validation().
In the upper cell range options "O1" and "O2" are available, in the lower cell range "O2" and
"O3". Using values directly is helpful if there are only a few values and it is not required to
provide a list of values on a spreadsheet.

wb <- wb_workbook()$
add_worksheet()$add_data(x = iris[1:30,])$
add_worksheet()$add_data(sheet = 2, x = sample(iris$Sepal.Length, 10))$
add_data_validation(sheet = 1, dims = "A2:A11", type = "list",

value = '"O1,O2"')$
add_data_validation(sheet = 1, dims = "A12:A21", type = "list",

value = '"O2,O3"')

11.5 Examples combining data validation and formulas

11.5.1 Example 1: hyperlink to selected value

formula_old <- '=HYPERLINK("#Tab_1!" & CELL("address",
INDEX(C1:F1, MATCH(A1, C1:F1, 0))), "Go to the selected column")'
formula_new <- '=HYPERLINK("#Tab_1!" & CELL("address",
INDEX(C1:F1, MATCH(A1, C1:F1, 0))), "Go to the selected column")'

wb <- wb_workbook()$
add_worksheet("Tab_1", zoom = 80, gridLines = FALSE)$
add_data(x = rbind(2016:2019), dims = "C1:F1", colNames = FALSE)$
add_data(x = 2017, dims = "A1", colNames = FALSE)$
add_data_validation(dims = "A1", type = "list",

value = '"2016,2017,2018,2019"')$
add_formula(dims = "B1", x = formula_old)$
add_formula(dims = "B2", x = formula_new)

11.5.2 Example 2: create hyperlink to github

wb <- wb_workbook()$
add_worksheet("Tab_1", zoom = 80, gridLines = FALSE)$

125

add_data(dims = "C1:F1", x = rbind(2016:2019), colNames = FALSE)$
add_data(x = 2017, startCol = 1, startRow = 1, colNames = FALSE)$
add_data_validation(dims = "A1", type = "list",

value = '"2016,2017,2018,2019"')$
add_formula(dims = "B1", x = '=HYPERLINK("#Tab_1!" &

CELL("address", INDEX(C1:F1, MATCH(A1, C1:F1, 0))),
"Go to the selected column")')$

add_formula(dims = "B2", x = '=IF(2017 = VALUE(A1),
HYPERLINK("github.com","github.com"), A1)')

126

12 Form control

This chapter delves into the wb_add_form_control() function, a versatile tool for embedding
interactive elements directly into your workbook. It will show how to seamlessly integrate
various form controls, including checkboxes1, radio buttons, and dropdowns, to enhance user
interaction and data input within your spreadsheets.

There are a few function’s parameter, available, to set or retrieve the form control value. This
allows the creation of dynamic and user-friendly workbooks that go beyond static data display,
enabling more engaging and efficient data management.

12.1 What Are Form Controls?

Form controls in a spreadsheet environment are interactive graphical objects that allow users
to input data, make selections, or trigger actions within a worksheet. Unlike directly typing
into cells, form controls provide a more structured and often more intuitive way for users to
interact with a workbook. They are commonly used to create interactive dashboards, data
entry forms, and simple applications within spreadsheet software.

Common types of form controls include:

• Checkboxes: Used for binary choices (e.g., “Yes/No,” “True/False,” or to select multiple
options from a list).

• Radio Buttons (Option Buttons): Used when the user must select only one option from
a mutually exclusive set of choices.

• Dropdown Lists (Combo Boxes): Allow users to select an item from a predefined list,
saving space on the worksheet and ensuring data consistency.

There are other form controls that are not yet implemented in openxlsx2, mostly due to the
lack of interest. The entire wb_add_form_control() function dates back to a user request.

1In 2024 a new checkbox was added in Excel. This makes use of the feature property bag and works slightly
different compared to the form control checkbox. Basically it is a logical value (0 or 1) that takes an overlay
to display a checked or unchecked box. They have the benefit that they are rather lightweight and stick to
the cell like any other embedded cell content, whereas the form control elements float over the spreadsheet.
There is no API for this yet, but you can use the new checkboxes like this:

127

library(openxlsx2)

wb <- wb_workbook()$add_worksheet()

add feature property bag
wb$featurePropertyBag <- '<FeaturePropertyBags xmlns=
"http://schemas.microsoft.com/office/spreadsheetml/2022/featurepropertybag">
<bag type="Checkbox" />
<bag type="XFControls">
<bagId k="CellControl">0</bagId>

</bag>
<bag type="XFComplement">
<bagId k="XFControls">1</bagId>

</bag>
<bag type="XFComplements" extRef="XFComplementsMapperExtRef">

<bagId>2</bagId>

</bag>

</FeaturePropertyBags>'
wb$append("workbook.xml.rels",

'<Relationship Id="rId5" Type=
"http://schemas.microsoft.com/office/2022/11/relationships/FeaturePropertyBag"
Target="featurePropertyBag/featurePropertyBag.xml"/>')

wb$append("Content_Types",
'<Override PartName="/xl/featurePropertyBag/featurePropertyBag.xml"
ContentType="application/vnd.ms-excel.featurepropertybag+xml"/>')

add style
extLst <- '<extLst>
<ext xmlns:xfpb=
"http://schemas.microsoft.com/office/spreadsheetml/2022/featurepropertybag"
uri="{C7286773-470A-42A8-94C5-96B5CB345126}">
<xfpb:xfComplement i="0" />

</ext>
</extLst>'
sty <- create_cell_style(ext_lst = extLst)
wb$styles_mgr$add(sty, "checkbox_sty")
xf_sty <- wb$styles_mgr$get_xf_id("checkbox_sty")

add data and assign style
wb$add_data(x = matrix(sample(c(TRUE, FALSE), 5, TRUE), 5, 2))
wb$set_cell_style(dims = "A2:A6", style = xf_sty)

wb$open()

128

12.2 Pros and Cons of Using Form Controls

12.2.1 Pros:

• Improved User Experience: Form controls make spreadsheets more intuitive and user-
friendly, guiding users through data entry and selection processes. This can reduce errors
and make complex workbooks more accessible.

• Data Validation and Consistency: By providing predefined options (e.g., dropdowns) or
structured inputs (e.g., checkboxes), form controls help enforce data validation, ensuring
that users enter data in a consistent and correct format.

• Reduced Manual Input Errors: By limiting choices or providing visual cues, form controls
can minimize the likelihood of typos or incorrect entries that often occur with manual
cell input.

12.2.2 Cons:

• Complexity in Setup: Implementing and linking form controls, especially with more
advanced functionalities like dynamic lists or macro triggers, can be more complex and
time-consuming than simple cell-based data entry.

• Accessibility Concerns: While generally improving usability, poorly implemented form
controls might pose challenges for users with certain disabilities or those relying on screen
readers, if not designed with accessibility in mind.

• Version Compatibility: The appearance and behavior of form controls can sometimes
vary slightly across different versions of spreadsheet software, which might lead to minor
display or functionality issues if shared across diverse user environments.

12.3 Checkboxes

library(openxlsx2)

wb <- wb_workbook()$
add_worksheet()$
add_form_control(dims = "B2")$
add_form_control(dims = "B3", text = "A text")$
add_data(dims = "A4", x = 0, colNames = FALSE)$
add_form_control(dims = "B4", link = "A4")$
add_data(dims = "A5", x = TRUE, colNames = FALSE)$
add_form_control(dims = "B5", range = "'Sheet 1'!A5", link = "B5")

129

12.4 Radio Buttons

wb$
add_worksheet()$
add_form_control(dims = "B2", type = "Radio")$
add_form_control(dims = "B3", type = "Radio", text = "A text")$
add_data(dims = "A4", x = 0, colNames = FALSE)$
add_form_control(dims = "B4", type = "Radio", link = "A4")$
add_data(dims = "A5", x = 1, colNames = FALSE)$
add_form_control(dims = "B5", type = "Radio")

12.5 Dropdown lists

wb$
add_worksheet()$
add_form_control(dims = "B2", type = "Drop")$
add_form_control(dims = "B3", type = "Drop", text = "A text")$

130

add_data(dims = "A4", x = 0, colNames = FALSE)$
add_form_control(dims = "B4", type = "Drop", link = "A1", range = "D4:D15")$
add_data(dims = "A5", x = 1, colNames = FALSE)$
add_form_control(dims = "B5", type = "Drop", link = "'Sheet 3'!D1:D26",

range = "A1")$
add_data(dims = "D1", x = letters)

131

13 Cloning and copying

When using openxlsx2 there are multiple ways to modify the workbook including various
ways to copy and clone sheets, cells and styles.

13.1 Copying cells

It is possible to copy cells into different regions of the worksheet using wb_copy_cells(). There
are three ways to copy cells: (1) as is, including styles, (2) as value replacing all formulas and
(3) as reference to the cell origin. This can be seen in the following image, the transposed cell
contains a formula pointing to the original cell.

library(openxlsx2)

mm <- matrix(1:6, 2)
wb <- wb_workbook()$add_worksheet()$
add_data(x = mm, col_names = FALSE)$
add_fill(dims = "A1:C1", color = wb_color(theme = 5))$
add_fill(dims = "A2:C2", color = wb_color(theme = 3))$
add_fill(dims = "A3:C3", color = wb_color(theme = 4))

dat <- wb_data(wb, dims = "A1:C3", col_names = FALSE)

wb$copy_cells(dims = "E1", data = dat)
wb$copy_cells(dims = "E5", data = dat, as_value = TRUE)
wb$copy_cells(dims = "E9", data = dat, as_ref = TRUE)

wb$copy_cells(dims = "I1", data = dat, transpose = TRUE)
wb$copy_cells(dims = "I5", data = dat, transpose = TRUE, as_value = TRUE)
wb$copy_cells(dims = "I9", data = dat, transpose = TRUE, as_ref = TRUE)

if (interactive()) wb$open()

132

13.2 Cloning worksheets

Sometimes it is not enough to copy a cell range, sometimes you need to copy entire worksheets.
This can be done using wb_clone_worksheet(). You can clone a worksheet in a workbook,
but also across workbooks, though the first option is simpler and might provide more features.
Cloning worksheets around that contain (pivot) tables and slicers for instance might be impos-
sible and some other features of the workbook might also not be present. In addition it is not
guaranteed that a clone will look identical to the original worksheet if relative theme colors
are used. As always, be careful if you use this feature and test that it works, before you start
cloning production worksheets.

fl <- system.file("extdata", "oxlsx2_sheet.xlsx", package = "openxlsx2")
wb_from <- wb_load(fl)

clone worksheet from SUM to NOT_SUM
wb_from$clone_worksheet(old = "SUM", new = "NOT_SUM")

clone worksheet across workbooks including styles and shared strings
wb$clone_worksheet(old = "SUM", new = "SUM", from = wb_from)

133

14 Comments and Working with Shapes in
openxlsx2

14.1 Adding Comments

Comments in Excel are useful for annotating cells with additional information. Using
openxlsx2, we can create comments and we can even create, reply to, and close threads
programmatically. Threads are a feature introduced in MS365 and replace the “comment”,
while legacy comments are now called “note”. We use comment and thread (their names in
the XML code), but each their own.

14.1.1 Creating a Comment

library(openxlsx2)

wb <- wb_workbook()$
add_worksheet()

Add a comment to cell A1
wb$add_comment(
dims = "B2",
comment = "This is a sample comment."

)

It is possible to style the comment, the manual page provides a few examples of this. openxlsx2
provides additional niche features such as background images for comments.1 For this we are
going to remove this previous comment.

1Since there is no dialog option for this on MS365 for Mac, I was not even sure what the user requesting this
feature, was even talking about.

134

eh what was it again?
wb$get_comment(dims = "B2")
#> ref author comment cmmt_id
#> 1 B2 runner runner: \n This is a sample comment. 1

okay, sample comment. can be removed
wb$remove_comment(dims = "B2")

14.1.2 Comments with background images

tmp <- tempfile(fileext = ".png")
png(file = tmp, bg = "transparent")
plot(1:10)
rect(1, 5, 3, 7, col = "white")
dev.off()
#> pdf
#> 2

c1 <- wb_comment(text = "this is a comment", author = "", visible = TRUE)
wb$add_comment(dims = "B12", comment = c1, file = tmp)

135

14.2 Working with Threads

In its foundation a comment is just some text in a quadratic shape. Usually it contains some
author information, but this is entirely optional, it could also be just some fictional text or
the authors name can be removed entirely. It is also quite complex to reply to a comment.
For this, threads were invented. A thread is something similar to a chat or mail chain. It is
created chronologically and it has a person attached to it. It is possible to answer to a thread
and to close it. As in, the question was solved, but it is left for everyone to see.

In spreadsheet software that does not support threads, a comment is shown with the informa-
tion content of the thread and a hint that the comment should not be altered.

14.2.1 Persons, create one or become one

To create a comment, you need to be a person assigned with the worksheet. Persons could
be corporate accounts with specific Ids (you need to import a worksheet with such an id).
Afterwards you can get the persons attached to the worksheet with wb_get_person(). While
there is an id attached to the person, it is not different compared to an email username. It can
be spoofed, and basically, if you select your id from the list of available names, please consider
if your company finds it as hilarious as you do, if you decide to create, open or answer threads
as someone else.

For now, we will create two persons.

wb <- wb_workbook()$add_worksheet()
Add a person to the workbook.

136

wb$add_person(name = "somebody")
wb$add_person(name = "you")

Now we want to create a thread as "you". The id pid itself is rather uninteresting, it is a guid,
similar to many others used in openxlsx2.

pid <- wb$get_person(name = "you")$id

14.2.2 Creating a Thread

And that’s it. Now we can create a thread as “you”.

wb$add_thread(dims = "A1", comment = "wow it works!", person_id = pid)
wb$add_thread(dims = "A2", comment = "indeed", person_id = pid, resolve = TRUE)
wb$add_thread(dims = "A1", comment = "so cool", person_id = pid, reply = TRUE)

137

14.3 Working with Shape Objects

Besides comments and notes, openxlsx2 allows for the addition of shapes, such as rectangles,
circles, and other graphical elements, to a worksheet.

14.3.1 Adding a Rectangle Shape

If you are wondering why the section about comment and threads is in the same section as
shapes, after all comments are something like a rectangular shape with a text.

rect <- create_shape(
shape = "rect", text_align = "center",
text = fmt_txt("I want to become a comment!", font = "Tahoma", size = "10",

color = wb_color("black"), family = 2),
fill_colour = wb_color(hex = "ffffe1"),
line_color = wb_color("black"),
line_transparency = 50

)

wb <- wb_workbook()$add_worksheet()$
add_drawing(dims = "B2:C5", xml = rect)

138

As seen it is possible to assign fmt_txt() strings to shape objects. And given some trial and
error it is even possible to create complex images with create_shape() objects.

heart
txt <- fmt_txt("openxlsx2 is the \n", bold = TRUE, size = 15) +
fmt_txt("best", underline = TRUE, bold = TRUE, size = 15) +
fmt_txt("\n!", bold = TRUE, size = 15)

heart <- create_shape(
shape = "heart", text = txt, text_align = "center",
fill_colour = wb_color("pink"), text_colour = wb_color("red"))

ribbon
txt <- fmt_txt("\nthe ") +
fmt_txt("very", underline = TRUE, font = "Courier",

color = wb_color("gold")) +
fmt_txt(" best")

ribbon <- create_shape(shape = "ribbon", text = txt, text_align = "center")

wb <- wb_workbook()$add_worksheet(grid_lines = FALSE)$
add_drawing(dims = "B2:E11", xml = heart)$
add_drawing(dims = "B12:E14", xml = ribbon)$
add_worksheet()$add_drawing(dims = "B2:E5",

xml = create_shape(
"rect", text = txt,
fill_color = wb_color(theme = 5),
fill_transparency = 50))

139

140

15 Upgrade from openxlsx

15.1 Basic read and write functions

Welcome to the openxlsx2 update vignette. In this vignette we will take some common code
examples from openxlsx and show you how similar results can be replicated in openxlsx2.
Thank you for taking a look, and let’s get started. While previous openxlsx functions used
the . in function calls, as well as camelCase, we have tried to switch to snake_case (this is
still a work in progress, there may still be function arguments that use camelCase).

15.1.1 Read xlsx or xlsm files

The basic read function changed from read.xlsx to read_xlsx. Using a default xlsx file
included in the package:

library(openxlsx2)

file <- system.file("extdata", "openxlsx2_example.xlsx", package = "openxlsx2")

The old syntax looked like this:

read in openxlsx
openxlsx::read.xlsx(xlsxFile = file)

This has changed to this:

read in openxlsx2
openxlsx2::read_xlsx(file = file)
#> Var1 Var2 <NA> Var3 Var4 Var5 Var6 Var7 Var8
#> 3 TRUE 1 NA 1 a 2023-05-29 3209324 This #DIV/0! 01:27:15
#> 4 TRUE NA NA #NUM! b 2023-05-23 <NA> 0 14:02:57
#> 5 TRUE 2 NA 1.34 c 2023-02-01 <NA> #VALUE! 23:01:02
#> 6 FALSE 2 NA <NA> #NUM! <NA> <NA> 2 17:24:53
#> 7 FALSE 3 NA 1.56 e <NA> <NA> <NA> <NA>

141

#> 8 FALSE 1 NA 1.7 f 2023-03-02 <NA> 2.7 08:45:58
#> 9 NA NA NA <NA> <NA> <NA> <NA> <NA> <NA>
#> 10 FALSE 2 NA 23 h 2023-12-24 <NA> 25 <NA>
#> 11 FALSE 3 NA 67.3 i 2023-12-25 <NA> 3 <NA>
#> 12 NA 1 NA 123 <NA> 2023-07-31 <NA> 122 <NA>

As you can see, we return the spreadsheet return codes (e.g., #NUM) in openxlsx2. An-
other thing to see above, we return the cell row as rowname for the data frame returned.
openxlsx2 should return a data frame of the selected size, even if it empty. If you preferred
openxlsx::readWorkbook() this has become wb_read(). All of these are wrappers for the
newly introduced function wb_to_df() which provides the most options. read_xlsx() and
wb_read() were created for backward comparability.

15.2 Write xlsx files

Basic writing in openxlsx2 behaves identical to openxlsx. Though be aware that overwrite
is an optional parameter in openxlsx2 and just like in other functions like base::write.csv()
if you write onto an existing file name, this file will be replaced.

Setting the output to some temporary xlsx file

output <- temp_xlsx()

The previous write function looks like this:

write in openxlsx
openxlsx::write.xlsx(iris, file = output, colNames = TRUE)

The new function looks quite similar:

write in openxlsx2
openxlsx2::write_xlsx(iris, file = output, col_names = TRUE)

15.3 Basic workbook functions

Workbook functions have been renamed to begin with wb_ there are plenty of these in the
package, therefore looking at the man pages seems to be the fastest way. Yet, it all begins
with loading the workbook.

142

15.3.1 Loading a workbook

A major feature in openxlsx are workbooks. Obviously they remain a central piece in
openxlsx2. Previous you would load them with:

wb <- openxlsx::loadWorkbook(file = file)

In openxlsx2 loading was changed to:

wb <- wb_load(file = file)

There are plenty of functions to interact with workbooks and we will not describe every single
one here. A detailed list can be found over at our references

15.3.2 Styles

One of the biggest user facing change was the removal of the stylesObject. In the following
section we use code from openxlsx::addStyle()

openxlsx
Create a new workbook
wb <- createWorkbook(creator = "My name here")
addWorksheet(wb, "Expenditure", gridLines = FALSE)
writeData(wb, sheet = 1, USPersonalExpenditure, rowNames = TRUE)

style for body
bodyStyle <- createStyle(border = "TopBottom", borderColor = "#4F81BD")
addStyle(wb, sheet = 1, bodyStyle, rows = 2:6, cols = 1:6, gridExpand = TRUE)

set column width for row names column
setColWidths(wb, 1, cols = 1, widths = 21)

In openxlsx2 the same code looks something like this:

openxlsx2 chained
border_color <- wb_color(hex = "4F81BD")
wb <- wb_workbook(creator = "My name here")$
add_worksheet("Expenditure", grid_lines = FALSE)$
add_data(x = USPersonalExpenditure, row_names = TRUE)$
add_border(# add the outer and inner border

143

https://janmarvin.github.io/openxlsx2/reference/index.html
https://ycphs.github.io/openxlsx/reference/addStyle.html

dims = "A1:F6",
top_border = "thin", top_color = border_color,
bottom_border = "thin", bottom_color = border_color,
inner_hgrid = "thin", inner_hcolor = border_color,
left_border = "", right_border = ""

)$
set_col_widths(# set column width

cols = 1:6,
widths = c(20, rep(10, 5))

)$ # remove the value in A1
add_data(dims = "A1", x = "")

The code above uses chaining. If you prefer piping, we provide the chained functions
with the prefix wb_ so wb_add_worksheet(), wb_add_data(), wb_add_border() and
wb_set_col_widths() would be the functions to use with pipes |> or %>%.

With pipes the code from above becomes

openxlsx2 with pipes
border_color <- wb_color(hex = "4F81BD")
wb <- wb_workbook(creator = "My name here") |>
wb_add_worksheet(sheet = "Expenditure", grid_lines = FALSE) |>
wb_add_data(x = USPersonalExpenditure, row_names = TRUE) |>
wb_add_border(# add the outer and inner border

dims = "A1:F6",
top_border = "thin", top_color = border_color,
bottom_border = "thin", bottom_color = border_color,
inner_hgrid = "thin", inner_hcolor = border_color,
left_border = "", right_border = ""

) |>
wb_set_col_widths(# set column width

cols = 1:6,
widths = c(20, rep(10, 5))

) |> # remove the value in A1
wb_add_data(dims = "A1", x = "")

Be aware that chains modify an object in place and pipes do not.

openxlsx2
wbp <- wb_workbook() |> wb_add_worksheet()
wbc <- wb_workbook()$add_worksheet()

144

need to assign wbp
wbp <- wbp |> wb_add_data(x = iris)
wbc$add_data(x = iris)

You can re-use styles with wb_get_cell_style() and wb_set_cell_style(). Abandoning
stylesObject in openxlsx2 has the huge benefit that we can import and export a spreadsheet
without changing any cell style. It is still possible to modify a cell style with wb_add_border(),
wb_add_fill(), wb_add_font() and wb_add_numfmt().

Additional examples regarding styles can be found in the styles vignette.

15.3.3 Conditional formatting

See vignette("conditional-formatting") for extended examples on formatting.

Here is a minimal example:

openxlsx2 with chains
wb <- wb_workbook()$
add_worksheet("a")$
add_data(x = 1:4, col_names = FALSE)$
add_conditional_formatting(dims = "A1:A4", rule = ">2")

openxlsx2 with pipes
wb <- wb_workbook() |>
wb_add_worksheet("a") |>
wb_add_data(x = 1:4, col_names = FALSE) |>
wb_add_conditional_formatting(dims = "A1:A4", rule = ">2")

15.3.4 Data validation

Similarly, data validation has been updated and improved. This openxlsx code for data
validation

openxlsx
wb <- createWorkbook()
addWorksheet(wb, "Sheet 1")
writeDataTable(wb, 1, x = iris[1:30,])
dataValidation(wb, 1,
col = 1:3, rows = 2:31, type = "whole",
operator = "between", value = c(1, 9)

)

145

looks in openxlsx2 something like this:

openxlsx2 with chains
wb <- wb_workbook()$
add_worksheet("Sheet 1")$
add_data_table(1, x = iris[1:30,])$
add_data_validation(1,

dims = wb_dims(rows = 2:31, cols = 1:3),
alternatively, dims can also be "A2:C31" if you know the span in your
spreadsheet
type = "whole",
operator = "between",
value = c(1, 9)

)

openxlsx2 with pipes
wb <- wb_workbook() |>
wb_add_worksheet("Sheet 1") |>
wb_add_data_table(1, x = iris[1:30,]) |>
wb_add_data_validation(

sheet = 1,
dims = "A2:C31", # alternatively, dims = wb_dims(rows = 2:31, cols = 1:3)
type = "whole",
operator = "between",
value = c(1, 9)

)

15.3.5 Saving

Saving has been switched from saveWorbook() to wb_save() and opening a workbook has
been switched from openXL() to wb_open().

146

16 Extending openxlsx2

library(openxlsx2)

16.1 msoc - Encrypting / Decrypting workbooks

You might want to look at msoc (Garbuszus 2023) for openxml file level encryp-
tion/decryption.

library(msoc)

xlsx <- temp_xlsx()

let us write some worksheet
wb_workbook()$add_worksheet()$add_data(x = mtcars)$save(xlsx)

now we can encrypt it
encrypt(xlsx, xlsx, pass = "msoc")
#> [1] "/tmp/RtmpGXfcjA/temp_xlsx_2471644172d1.xlsx"

the file is encrypted, we can not read it
try(wb <- wb_load(xlsx))
#> Error : Unable to open and load file: /tmp/RtmpGXfcjA/temp_xlsx_2471644172d1.xlsx

we have to decrypt it first
decrypt(xlsx, xlsx, pass = "msoc")
#> [1] "/tmp/RtmpGXfcjA/temp_xlsx_2471644172d1.xlsx"

now we can load it again
wb_load(xlsx)$to_df() |> head()
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> 2 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
#> 3 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
#> 4 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1

147

#> 5 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
#> 6 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
#> 7 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

16.2 flexlsx - Exporting flextable to workbooks

Using flexlsx (Heidler 2024) you can extend openxlsx2 to write flextable objects (Gohel
and Skintzos 2023) to spreadsheets. Various styling options are supported. A detailed descrip-
tion how to create flextables is given in the flextable book (a link is in the bibliography).

library(flexlsx)

wb <- wb_workbook()$add_worksheet("mtcars", grid_lines = FALSE)

Create a flextable and an openxlsx2 workbook
ft <- flextable::as_flextable(table(mtcars[2:5, 1:2]))
ft

add the flextable ft to the workbook, sheet "mtcars"
offset the table to cell 'C2'
wb <- flexlsx::wb_add_flextable(wb, "mtcars", ft, dims = "C2")

if (interactive()) wb$open()

148

Figure 16.1: The flextable written as xlsx file and as image

16.3 openxlsx2Extras - Extending openxlsx2

Early in development, openxlsx2Extras (Pousson 2024) allows extending various functions
for user convenience or for features, that are more focused on working along openxlsx2 and
therefore are not necessary a requirement for the package itself.

One example (more can be found on the project github and pkgdown pages) is the following.

library(openxlsx2)
library(openxlsx2Extras)

149

wb_new_workbook(
title = "Workbook created with wb_new_workbook",
sheet_names = c("First sheet", "Second sheet"),
tab_color = c(wb_color("orange"), wb_color("yellow"))

)
#> A Workbook object.
#>
#> Worksheets:
#> Sheets: First sheet, Second sheet
#> Write order: 1, 2

16.4 ovbars - Reading the vbaProject.bin

Another niche package is ovbars (Garbuszus 2024). This package allows reading the binary
blob that contains macros in xlsm and potentially xlsb files. The package allows extracting
the VBA code.

url <- "https://github.com/JanMarvin/openxlsx-data/raw/refs/heads/main"
fl <- file.path(url, "gh_issue_416.xlsm")
wb <- openxlsx2::wb_load(fl)
vba <- wb$vbaProject

code <- ovbars::ovbar_out(name = vba)
message(code["Sheet1"])
#> Attribute VB_Name = "Sheet1"
#> Attribute VB_Base = "0{00020820-0000-0000-C000-000000000046}"
#> Attribute VB_GlobalNameSpace = False
#> Attribute VB_Creatable = False
#> Attribute VB_PredeclaredId = True
#> Attribute VB_Exposed = True
#> Attribute VB_TemplateDerived = False
#> Attribute VB_Customizable = True
#> Private Sub Worksheet_SelectionChange(ByVal Target As Range)
#> #donothing
#> End Sub

150

References

Allen, Michael. 2023. Readxlsb: Read ’Excel’ Binary (.xlsb) Workbooks. https://CRAN.R-
project.org/package=readxlsb.

Barbone, Jordan Mark, and Jan Marvin Garbuszus. 2024. Openxlsx2: Read, Write and Edit
’Xlsx’ Files. https://janmarvin.github.io/openxlsx2/.

Chang, Winston. 2021. R6: Encapsulated Classes with Reference Semantics. https://CRAN.
R-project.org/package=R6.

Dotta, Damien, and Julien Blasco. 2024. Tablexlsx: Export Data Frames to Excel Workbook.
https://doi.org/10.32614/CRAN.package.tablexlsx.

Dragulescu, Adrian, and Cole Arendt. 2023. Xlsx: Read, Write, Format Excel 2007 and Excel
97/2000/XP/2003 Files. https://CRAN.R-project.org/package=xlsx.

Dreano, Denis. 2023. Knitxl: Generates a Spreadsheet Report from an ’Rmarkdown’ File.
https://doi.org/10.32614/CRAN.package.knitxl.

ECMA-376-1. 2016. Office Open XML File Formats — Fundamentals and Markup Language
Reference.

Eddelbuettel, Dirk, and Romain François. 2011. “Rcpp: Seamless R and C++ Integration.”
Journal of Statistical Software 40 (8): 1–18. https://doi.org/10.18637/jss.v040.i08.

Garbuszus, Jan Marvin. 2023. Msoc: Encrypt and Decrypt of Office Open Xml Files. https:
//janmarvin.github.io/msoc/.

———. 2024. Ovbars: Accesses the ’Ovba’ Rust Library to Extract Vba Binary Files. https:
//janmarvin.github.io/ovbars/.

Garmonsway, Duncan. 2022. Tidyxl: Read Untidy Excel Files. https://CRAN.R-project.org/
package=tidyxl.

Glanville, Yvonne. 2016. joinXL: Perform Joins or Minus Queries on ’Excel’ Files. https:
//doi.org/10.32614/CRAN.package.joinXL.

Gohel, David, and Panagiotis Skintzos. 2023. Flextable: Functions for Tabular Reporting.
https://ardata-fr.github.io/flextable-book/.

Gruson, Hugo. 2023. Xlcutter: Parse Batches of ’Xlsx’ Files Based on a Template. https:
//doi.org/10.32614/CRAN.package.xlcutter.

Heidler, Tobias. 2024. Flexlsx: Exporting ’Flextable’ to ’Xlsx’ Files. https://github.com/
pteridin/flexlsx.

Henze, Felix. 2024. SheetReader: Parse Xlsx Files. https://doi.org/10.32614/CRAN.package.
SheetReader.

Hilderson, Nicholas. 2025. Xlr: Create Table Summaries and Export Neat Tables to ’Excel’.
https://doi.org/10.32614/CRAN.package.xlr.

Kapoulkine, Arseny. 2006-2023. Pugixml. https://pugixml.org.

151

https://CRAN.R-project.org/package=readxlsb
https://CRAN.R-project.org/package=readxlsb
https://janmarvin.github.io/openxlsx2/
https://CRAN.R-project.org/package=R6
https://CRAN.R-project.org/package=R6
https://doi.org/10.32614/CRAN.package.tablexlsx
https://CRAN.R-project.org/package=xlsx
https://doi.org/10.32614/CRAN.package.knitxl
https://doi.org/10.18637/jss.v040.i08
https://janmarvin.github.io/msoc/
https://janmarvin.github.io/msoc/
https://janmarvin.github.io/ovbars/
https://janmarvin.github.io/ovbars/
https://CRAN.R-project.org/package=tidyxl
https://CRAN.R-project.org/package=tidyxl
https://doi.org/10.32614/CRAN.package.joinXL
https://doi.org/10.32614/CRAN.package.joinXL
https://ardata-fr.github.io/flextable-book/
https://doi.org/10.32614/CRAN.package.xlcutter
https://doi.org/10.32614/CRAN.package.xlcutter
https://github.com/pteridin/flexlsx
https://github.com/pteridin/flexlsx
https://doi.org/10.32614/CRAN.package.SheetReader
https://doi.org/10.32614/CRAN.package.SheetReader
https://doi.org/10.32614/CRAN.package.xlr
https://pugixml.org

Kim, Gwang-Jin. 2019. Xlsx2dfs: Read and Write ’Excel’ Sheets into and from List of Data
Frames. https://doi.org/10.32614/CRAN.package.xlsx2dfs.

Luginbuhl, Felix. 2024. Xlcharts: Create Native ’Excel’ Charts and Work with Microsoft
’Excel’ Files. https://doi.org/10.32614/CRAN.package.xlcharts.

Ooms, Jeroen. 2023. Writexl: Export Data Frames to Excel ’Xlsx’ Format. https://CRAN.R-
project.org/package=writexl.

Pousson, Eli. 2024. openxlsx2Extras: Extra Functions for the Openxlsx2 Package. https:
//github.com/elipousson/openxlsx2Extras.

Rodríguez, Jesus Maria Rodríguez. 2023. Tablaxlsx: Write Formatted Tables in Excel Work-
books. https://doi.org/10.32614/CRAN.package.tablaxlsx.

Schauberger, Philipp, and Alexander Walker. 2023. Openxlsx: Read, Write and Edit Xlsx
Files. https://CRAN.R-project.org/package=openxlsx.

Schwartz, Marc. 2022. WriteXLS: Cross-Platform Perl Based r Function to Create Excel 2003
(XLS) and Excel 2007 (XLSX) Files. https://CRAN.R-project.org/package=WriteXLS.

Wickham, Hadley, and Jennifer Bryan. 2023. Readxl: Read Excel Files. https://CRAN.R-
project.org/package=readxl.

152

https://doi.org/10.32614/CRAN.package.xlsx2dfs
https://doi.org/10.32614/CRAN.package.xlcharts
https://CRAN.R-project.org/package=writexl
https://CRAN.R-project.org/package=writexl
https://github.com/elipousson/openxlsx2Extras
https://github.com/elipousson/openxlsx2Extras
https://doi.org/10.32614/CRAN.package.tablaxlsx
https://CRAN.R-project.org/package=openxlsx
https://CRAN.R-project.org/package=WriteXLS
https://CRAN.R-project.org/package=readxl
https://CRAN.R-project.org/package=readxl

	Preface
	Additional examples
	Where to get help

	Introduction
	Installation
	Working with the package
	Example
	Authors and contributions
	License
	A note on speed and memory usage
	Invitation to contribute

	Basics
	First steps
	Handling workbooks
	Importing as workbook

	Exporting data
	Exporting data frames or vectors
	Exporting a wbWorkbook
	dims/ wb_dims()

	Reading to data frames
	Importing data
	Basic import
	col_names - first row as column name
	detect_dates - convert cells to R dates
	show_formula - show formulas instead of results
	dims - read specific dimension
	cols - read selected columns
	rows - read selected rows
	convert - convert input to guessed type
	skip_empty_rows - remove empty rows
	skip_empty_cols - remove empty columns
	row_names - keep rownames from input
	types - convert column to specific type
	start_row - where to begin
	na.strings - define missing values
	Importing as workbook

	Example: Reading real world data
	Reading the data table
	Cleaning the indents
	Read selected dims
	Read data header and body in parts
	Bonus: clean up this xlsx table

	Of strings and numbers
	Default numeric data frame
	Writing missing values
	Writing vectors
	Data frame with multiple row header
	How to write multiple header rows?
	Labelled data
	Hour - Minute - Second

	Styling of worksheets
	Colors, text rotation and number formats
	the quick way: using high level functions
	the long way: using bare metal functions

	Working with number formats
	numfmts
	numfmts2

	Modifying the column and row widths
	wb_set_col_widths
	wb_set_row_heigths

	Adding borders
	add borders
	styled table

	Use workbook colors and modify them
	Copy cell styles
	Style strings
	Create custom table styles
	Named styles
	Styled columns / rows
	Styling with dims

	Conditional Formatting, Databars, and Sparklines
	Conditional Formatting
	Rule applies to all each cell in range
	Highlight row dependent on first cell in row
	Highlight column dependent on first cell in column
	Highlight entire range cols X rows dependent only on cell A1
	Highlight cells in column 1 based on value in column 2
	Highlight duplicates using default style
	Cells containing text
	Cells not containing text
	Cells begins with text
	Cells ends with text
	Colorscale colors cells based on cell value
	Between
	Top N
	Bottom N
	Logical Operators
	(Not) Contains Blanks
	(Not) Contains Errors
	Iconset
	Unique Values

	Databars
	Sparklines

	Charts
	Adding a chart as an image to a workbook
	Adding {ggplot2} plots to a workbook
	Adding plots via {rvg} or {devEMF}
	Adding {mschart} plots
	Add chart and data
	Add chart using wb_data()
	Add and fill a chartsheet

	Spreadsheet formulas
	Simple formulas
	Array formulas
	Array formulas creating multiple fields
	Modern spreadsheet functions
	Shared formulas
	Cell error handling
	cells metadata (cm) formulas
	dataTable formulas

	Pivot tables
	Adding pivot tables
	Filter, row, column, and data
	Sorting
	Aggregation functions
	Styling pivot tables
	Pivot table dims
	Using number formats

	Adding slicers to pivot tables
	Choosing variable filters
	Final remarks

	Data Validation
	Checking numeric ranges and text lengths
	Date and Time cell validation
	validate list: validate inputs on one sheet with another
	validate list: validate inputs with values
	Examples combining data validation and formulas
	Example 1: hyperlink to selected value
	Example 2: create hyperlink to github

	Form control
	What Are Form Controls?
	Pros and Cons of Using Form Controls
	Pros:
	Cons:

	Checkboxes
	Radio Buttons
	Dropdown lists

	Cloning and copying
	Copying cells
	Cloning worksheets

	Comments and Working with Shapes in openxlsx2
	Adding Comments
	Creating a Comment
	Comments with background images

	Working with Threads
	Persons, create one or become one
	Creating a Thread

	Working with Shape Objects
	Adding a Rectangle Shape

	Upgrade from openxlsx
	Basic read and write functions
	Read xlsx or xlsm files

	Write xlsx files
	Basic workbook functions
	Loading a workbook
	Styles
	Conditional formatting
	Data validation
	Saving

	Extending openxlsx2
	msoc - Encrypting / Decrypting workbooks
	flexlsx - Exporting flextable to workbooks
	openxlsx2Extras - Extending openxlsx2
	ovbars - Reading the vbaProject.bin

	References

